Skip to main content
Log in

Unwinding of a cholesteric liquid crystal and bidirectional surface anchoring

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We examine the influence of bidirectional anchoring on the unwinding of a planar cholesteric liquid crystal induced by the application of a magnetic field. We consider a liquid crystal layer confined between two plates with the helical axis perpendicular to the substrates. We fix the director twist on one boundary and allow for bidirectional anchoring on the other by introducing a high-order surface potential. By minimizing the total free energy for the system, we investigate the untwisting of the cholesteric helix as the liquid crystal attempts to align with the magnetic field. The transitions between metastable states occur as a series of pitchjumps as the helix expels quarter- or half-turn twists, depending on the relative sizes of the strength of the surface potential and the bidirectional anchoring. We show that secondary easy axis directions can play a significant role in the unwinding of the cholesteric in its transition towards a nematic, especially when the surface anchoring strength is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. de Jeu WH (1980) Physical properties of liquid crystalline materials. Gordon and Breach, New York

    Google Scholar 

  2. de Gennes PG (1968) Calcul de la distorsion d’une structure cholesterique par un champ magnetique. Solid State Commun 6:163–165

    Article  ADS  Google Scholar 

  3. Kedney PJ, Stewart IW (1994) On the magnetically induced cholesteric to nematic phase transition. Lett Math Phys 31:261–269

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Meyer RB (1968) Effects of electric and magnetic fields on the structure of cholesteric liquid crystals. Appl Phys Lett 12:281–282

    Article  ADS  Google Scholar 

  5. Wysocki J, Adams J, Haas W (1968) Electric-field-induced phase change in cholesteric liquid crystals. Phys Rev Lett 20:1024–1026

    Article  ADS  Google Scholar 

  6. Meyer RB (1969) Distortion of a cholesteric structure by a magnetic field. Appl Phys Lett 14:208–209

    Article  ADS  Google Scholar 

  7. Durand G, Leger L, Rondelez F, Veyssie M (1969) Magnetically induced cholesteric to nematic phase transition in liquid crystals. Phys Rev Lett 22:227–228

    Article  ADS  Google Scholar 

  8. Baessler H, Labes MM (1968) Relationship between electric field strength and helix pitch in induced cholesteric-nematic phase transitions. Phys Rev Lett 21:1791–1793

    Article  ADS  Google Scholar 

  9. Pinkevich IP, Reshetnyak VY, Reznikov YA, Grechko LG (1992) Influence of light induced molecular conformational transformations and anchoring energy on cholesteric liquid crystal pitch and dielectric properties. Mol Cryst Liq Cryst Sci Technol Sect A 222:269–278

    Google Scholar 

  10. Gandhi JV, Mi X-D, Yang D-K (1998) Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals. Phys Rev E 57:6761–6766

    Article  ADS  Google Scholar 

  11. Anderson MR, Baughn JW (2004) Hysteresis in liquid crystal thermography. J Heat Transf 126:339–346

    Article  Google Scholar 

  12. Palto SP (2002) On mechanisms of the helix pitch variation in a thin cholesteric layer confined between two surfaces. JETP 94:260–269

    Article  ADS  Google Scholar 

  13. Yoon HG, Roberts NW, Gleeson HF (2006) An experimental investigation of discrete changes in pitch in a thin, planar chiral nematic device. Liq Cryst 33:503–510

    Article  Google Scholar 

  14. McKay G (2012) Bistable surface anchoring and hysteresis of pitch jumps in a planar cholesteric liquid crystal. Eur Phys J E 35:74

    Article  ADS  Google Scholar 

  15. Dreher R (1973) Remarks on the distortion of a cholesteric structure by a magnetic field. Solid State Commun 13:1571–1574

    Article  ADS  Google Scholar 

  16. van Sprang HA, van de Venne JLM (1985) Influence of the surface interaction on threshold values in the cholesteric-nematic phase transition. J Appl Phys 57:175–179

    Article  ADS  Google Scholar 

  17. Schlangen LJM, Pashai A, Cornelissen HJ (2000) The field-induced cholesteric-nematic phase transition and its dependence on layer thickness, boundary conditions, and temperature. J Appl Phys 87:3723–3729

    Article  ADS  Google Scholar 

  18. Smalyukh II, Senyuk BI, Palffy-Muhoray P, Lavrentovich OD, Huang H, Gartland EC, Bodnar VH, Kosa T, Taheri B (2005) Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells. Phys Rev E 72:061707

    Article  ADS  Google Scholar 

  19. Kedney PJ, Stewart IW (1994) The untwisting of a bounded sample of cholesteric liquid crystal. Continuum Mech Thermodyn 6:141–148

    Article  ADS  MATH  Google Scholar 

  20. Scarfone AM, Lelidis I, Barbero G (2011) Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model. Phys Rev E 84:021708

    Article  ADS  Google Scholar 

  21. Lelidis I, Barbero G, Scarfone AM (2012) Cholesteric pitch-transitions induced by a magnetic field in a sample containing incomplete number of pitches. Cent Eur J Phys 3:587–593

    Article  Google Scholar 

  22. Belyakov VA (2002) Untwisting of the helical structure in a plane layer of chiral liquid crystal. JETP Lett 76:88–92

    Article  ADS  Google Scholar 

  23. Zink H, Belyakov VA (1996) Temperature variations in the director orientation and anchoring energy at the surface of cholesteric layers. JETP Lett 63:43–49

    Article  ADS  Google Scholar 

  24. Zink H, Belyakov VA (1997) Temperature hysteresis of the change in the cholesteric pitch and surface anchoring in thin planar layers. JETP 85:285–291

    Article  ADS  Google Scholar 

  25. Zink H, Belyakov VA (1999) Studies of the temperature-pitch variations in planar cholesteric layers and surface anchoring. Mol Cryst Liq Cryst Sci Technol Sect A 329:457–464

    Google Scholar 

  26. Belyakov VA, Stewart IW, Osipov MA (2004) Dynamics of jumpwise temperature pitch variations in planar cholesteric layers for a finite strength of surface anchoring. JETP 99:73–82

    Article  ADS  Google Scholar 

  27. Belyakov VA, Stewart IW, Osipov MA (2005) Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers. Phys Rev E 71:051708

    Article  ADS  Google Scholar 

  28. Kiselev AD, Sluckin TJ (2005) Twist of cholesteric liquid crystal cells: stability of helical structures and anchoring energy effects. Phys Rev E 71:031704

    Article  ADS  Google Scholar 

  29. Rapini A, Papoular M (1972) Distortion d’une lamelle nematique sous champ magnetique conditions d’ancrage aux parois. J de Physique Colloq 30(C4):54–56

    Google Scholar 

  30. Stewart IW (2004) The static and dynamic continuum theory of liquid crystals. Taylor and Francis, London

    Google Scholar 

  31. Kim J-H, Yoneya M, Yamamoto J, Yokoyama H (2001) Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns. Appl Phys Lett 78:3055–3057

    Article  ADS  Google Scholar 

  32. Fukuda J, Yoneya M, Yokoyama H (2007) Surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model re-examined. Phys Rev Lett 98:187803

    Article  ADS  Google Scholar 

  33. Gwag JS, Fukuda J, Yoneya M, Yokoyama H (2007) In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief. Appl Phys Lett 91:073504

    Article  ADS  Google Scholar 

  34. Sergan V, Durand G (1995) Anchoring anisotropy of a nematic liquid crystal on a bistable SiO evaporated surface. Liq Cryst 18:171–174

    Article  Google Scholar 

  35. Barberi R, Bonvent JJ, Giocondo M, Iovane M (1998) Bistable nematic azimuthal alignment induced by anchoring competition. J Appl Phys 84:1321–1324

    Article  ADS  Google Scholar 

  36. Yoneya M, Kim JH, Yokoyama H (2002) Simple model for patterned bidirectional anchoring of nematic liquid crystal and its bistability. Appl Phys Lett 80:374–376

    Article  ADS  Google Scholar 

  37. Pieranski P, Jérôme B (1989) Adsorption-induced anchoring transitions at nematic–liquid–crystal–crystal interfaces. Phys Rev A 40:317–322

    Article  ADS  Google Scholar 

  38. de Gennes PG, Prost J (1993) The physics of liquid crystals, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  39. Courant R, Hilbert D (1953) Methods of mathematical physics, vol 1. Interscience Publishers, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. McKay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKay, G. Unwinding of a cholesteric liquid crystal and bidirectional surface anchoring. J Eng Math 87, 19–28 (2014). https://doi.org/10.1007/s10665-013-9668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-013-9668-z

Keywords

Navigation