Skip to main content
Log in

High-frequency diffraction of a electromagnetic plane wave by an imperfectly conducting rectangular cylinder

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 02 October 2014

Abstract

We shall consider the problem of determining the scattered far-wave field produced when a plane E-polarized wave is incident on an imperfectly conducting rectangular cylinder. On the basis of the uniform asymptotic solution for the problem of the diffraction of a plane wave by a right-angled impedance wedge, in conjunction with Keller’s method and multiple diffraction, a high-frequency far-field solution to the problem is given for two edge diffractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nechayev YI, Constantinou CC (2006) Improved heuristic diffraction coefficients for an impedance wedge at normal incidence. IEE Proc Microwav Antennas Propag 153(2): 125–132

    Article  Google Scholar 

  2. Bertoni HL (2000) Radio propagation for modern wireless systems. Pretice Hall, New Jersey, pp 53–83, 107–139

  3. Driessen EFC, de Dood J (2009) The perfect absorber. Appl Phys Lett 94: 171109

    Article  ADS  Google Scholar 

  4. Ando M (1990) The geometrical theory of diffraction, Chap. 7. In: Yamashita E (ed) Analysis methods for electromagnetic wave problems. Artech House, Boston

  5. Chen G, Bridges TJ, Zhou J (1988) Minimizing the reflection of waves by surface impedance using boundary elements and global optimization. Wave Motion 10: 239–255

    Article  MATH  Google Scholar 

  6. Rawlins AD (2005) The optimum orientation of an absorbing barrier. Proc R Soc A 461: 2369–2383

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Tretyakov S (2003) The geometrical theory of diffraction. Analytical modeling in applied electromagnetics. Artech House, Boston

    Google Scholar 

  8. Sato K, Manabe T, Polivka J, Ihara T, Kasashima Y, Yamaki K (1996) Measurement of the complex refractive index of concrete at 57.5 GHz. IEEE Trans Antenna Propag 44(1): 35–40

    Article  ADS  Google Scholar 

  9. Li L, Wang Y, Gong K (1998) Measurements of building construction materials at Ka-Band. Int J Infrared Millim Waves 19(9): 1293–1298

    Article  Google Scholar 

  10. Siqueiros JM, Regalado LE, Machorro R (1988) Determination of (n,k) for absorbing thin films using reflectance measurements. Appl Opt 27(20): 4260–4264

    Article  ADS  Google Scholar 

  11. Zhao X, Rekanos IT, Vainikainen P (2003) A recommended Maliuzhinets diffraction coefficients for right angle lossy wedges. In: IEEE 5th European personal mobile communications conference, pp 195–198

  12. El-Sallabi HM, Vainikainen P (2003) A new Heuristic diffraction coefficient for lossy dielectric wedges at normal incidence. IEEE Antennas Wireless Propag Lett 1: 165–168

    Article  ADS  Google Scholar 

  13. Demetrescu C, Constantinou CC, Mehler MJ (1997) Scattering by a right-angled lossy dielectric wedge. IEE Proc Microwav Antennas Propag 144(5): 392–396

    Article  Google Scholar 

  14. Demetrescu C, Constantinou CC, Mehler MJ (1998) Corner and rooftop diffraction in radiowave propagation prediction tools: a review. In: 48th IEEE vehicular technology conference, pp 515–519

  15. Rawlins AD (2009) Asymptotics of a right-angled impedance wedge. J Eng Math 65: 355–366

    Article  MathSciNet  MATH  Google Scholar 

  16. Rawlins AD (1990) Diffraction of an E- or H-polarized electromagnetic plane wave by a right-angle wedge with imperfectly conducting faces. Q J Mech Appl Math 43(2): 161–172

    Article  MathSciNet  MATH  Google Scholar 

  17. Morse BJ (1964) Diffraction by polygonal cylinders. J Math Phys 5: 199–214

    Article  ADS  MATH  Google Scholar 

  18. van Bladel J (2007) Electromagnetic fields, 2nd edn. Wiley, New Jersey

    Book  Google Scholar 

  19. Mei KK, van Bladel J (1963) Scattering by a perfectly-conducting rectangular cylinders. IEEE Trans Antennas Propag 11: 185–192

    Article  ADS  Google Scholar 

  20. Mei KK (1963) Scattering of high-frequency waves by perfectly-conducting rectangular cylinders. IRE Int Convention Record 11: 132–136

    Article  Google Scholar 

  21. Hinata T, Yamasaki T, Tamura M, Honsono T (1983) Scattering of plane electromagnetic waves by conducting rectangular cylinders. Electron Commun Jpn 66(8): 63–73

    Article  Google Scholar 

  22. Cheung DH, Jull EV (2000) Antenna pattern scattering by rectangular cylinders. IEEE Trans Antennas Propag 48(10): 1691–1698

    Article  ADS  Google Scholar 

  23. Topsakal E, Büyükaksoy A, Idemen M (2000) Scattering of electromagnetic waves by a rectangular impedance cylinder. Wave Motion 31: 273–296

    Article  MathSciNet  MATH  Google Scholar 

  24. Senior TBA (1960) Impedance boundary conditions for imperfectly conducting surfaces. Appl Sci Res B 8(1): 418–436

    Article  MathSciNet  MATH  Google Scholar 

  25. Keller JB (1962) A geometrical theory of diffraction. J Opt Soc Am 52(2): 116–130

    Article  ADS  Google Scholar 

  26. Zitron N, Karp SN (1961) Higher order approximations in multiple scattering. I Two-dimensional scalar case. J Math Phys 2: 394–402

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Martin PA (2006) Multiple scattering. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  28. Jones DS (1964) The theory of electromagnetism. Pergamon Press, Oxford, pp 608–612

    MATH  Google Scholar 

  29. Rawlins AD (1976) Diffraction of sound by a rigid screen with an absorbent edge. J Sound Vib 47(4): 523–541

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony D. Rawlins.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10665-014-9715-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawlins, A.D. High-frequency diffraction of a electromagnetic plane wave by an imperfectly conducting rectangular cylinder. J Eng Math 76, 157–180 (2012). https://doi.org/10.1007/s10665-011-9516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-011-9516-y

Keywords

Navigation