Skip to main content
Log in

Ultrasound detection of externally induced microthrombi cloud formation: a theoretical study

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A mathematical model for the formation of microaggregates (microthrombi) of fibrin polymers in blood flow is considered. It is assumed that the former are induced by an external source (which may be of inflammatory or tumor nature) located in a tissue near the vessel. In either case, specific agents (e.g. cytokines) are emitted from that pathological site. Such substances permeate through the vessel wall to act as primary activators of blood coagulation. A mathematical criterion to describe the formation of an intravascular microthrombi cloud, which is interpreted as an early indicator of subsequent macroscopic thrombi formation is discussed. Such criteria are compared with available experimental detection tests for microthrombi cloud formation by means of ultrasound techniques. Moreover, a similarity-type relation is proposed that links the location of the unfolding microthrombi cloud and the place at which such primary activator reaches the vessel wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goethe JW (1906) Faust, Part 1 (trans: Swanwick A). George Routledge & Sons, London

    Google Scholar 

  2. McFarlane RG (1966) The basis of the cascade hypothesis of blood clotting. Thromb Diath Haemorrh 15: 591–602

    Google Scholar 

  3. Davie EW (1995) Biochemical and molecular aspects of the coagulation cascade. Thromb Haemost 74(1): 135–153

    Google Scholar 

  4. Hockin MF, Jones KC, Everse SJ et al (2002) A model for the stoichiometric regulation of blood coagulation. J Biol Chem 277: 18322–18333

    Article  Google Scholar 

  5. Beltrami E, Jesty J (1995) Mathematical analysis of activation thresholds in enzyme-catalyzed positive feedbacks: application to the feedbacks of blood coagulation. PNAS 92(19): 8744–8748

    Article  MATH  ADS  Google Scholar 

  6. Ataullakhanov FI, Guria GT (1994) Spatial aspects of human blood clotting dynamics I. Hypothesis. Biophysics 39: 89–96

    Google Scholar 

  7. Ataullakhanov FI, Guria GT, Safroshkina AYu (1994) Spatial aspects human blood clotting dynamics II. Phenomenological model. Biophysics 39: 979–1068

    Google Scholar 

  8. Ataullakhanov FI, Guria GT, Sarbash VI et al (1998) Spatiotemporal dynamics of clotting and pattern formation in human blood. Biochim Biophys Acta 1425: 453–468

    Google Scholar 

  9. Tyurin KV, Khanin MA (2006) Hemostasis as an optimal system. Math Biosci 204: 167–184

    Article  MATH  MathSciNet  Google Scholar 

  10. Wagenvoord R, Hemker PW, Hemker HC (2006) The limits of simulation of the clotting system. J Thromb Haemost 4: 1331–1338

    Article  Google Scholar 

  11. Guy RD, Fogelson AL, Keener JP (2007) Fibrin gel formation in a shear flow. Math Med Biol 24: 111–130

    Article  MATH  Google Scholar 

  12. Guria GTh, Herrero MA, Zlobina KE (2009) A mathematical model of blood coagulation induced by activation sources. Discr Cont Dyn Syst A 25(1): 175–194

    Article  MATH  MathSciNet  Google Scholar 

  13. Mikell FL, Asinger RW, Elsperger KJ et al (1982) Regional stasis of blood in the dysfunctional left ventricle: echocardiographic detection and differentiation from early thrombosis. Circulation 66(4): 755–763

    Google Scholar 

  14. Uzlova SG, Guria KG, Shevelev AA et al (2008) Acustically detected intravascular micro-clots as predictors of thrombotic postoperative complications (Russian). In: Bulletin of A.N. Bakilev’s National Centre for Cardiovascular Surgery NCSSH, Cardiovascular diseases, vol 5, pp 55–64

  15. Huang CC, Wang SH, Tsui PH (2005) Detection of blood coagulation and clot formation using quantitative ultrasonic parameters. Ultrasound Med Biol 31(11): 1567–1573

    Article  Google Scholar 

  16. Uzlova S, Guria K, Guria GTh (2008) Acoustic determination of early stages of intravascular blood coagulation. Philos Trans R Soc A 366: 3649–3661

    Article  ADS  Google Scholar 

  17. Daniel WG, Nellessen U, Schroder E, Nonnast-Daniel B, Bednarski P, Nikutta P, Lichtlen PR (1988) Left atrial spontaneous echo contrast in mitral valve disease: an indicator for an increased thromboembolic risk. J Am Coll Cardiol 11(6): 1204–1211

    Article  Google Scholar 

  18. Zlobina KE, Guria GTh (2006) Acoustically detected intravascular microaggregation phenomenon caused by pathological processes in tissue. Mathematical model. Similarity laws (Russian). Thromb Hemost Rheol 2: 3–14

    Google Scholar 

  19. De Cicco M (2004) The prothrombotic state in cancer: pathogenic mechanisms. Crit Rev Oncol Hematol 50: 187–196

    Article  Google Scholar 

  20. Levi M, van der Poll T, Büller HR (2004) Bidirectional relation between inflammation and coagulation. Circulation 109: 2698–2704

    Article  Google Scholar 

  21. Esmon CT (2004) Interactions between the innate immune and blood coagulation systems. Trends Immunol 25(10): 536–542

    Article  Google Scholar 

  22. Levi M (2009) Disseminated intravascular coagulation in cancer patients. Best Pract Res Clin Haematol 22(1): 129–136

    Article  Google Scholar 

  23. Kumar R, Gupta V (2008) Disseminated intravascular coagulation: current concepts. Indian J Pediatr 75(7): 733–738

    Article  Google Scholar 

  24. Schmeltzer JWP (2008) Nucleation theory and applications. Dubna, JINR

  25. Jones KC, Mann KG (1994) A model for tissue factor pathway to thrombin. J Biol Chem 269(37): 23367–23373

    Google Scholar 

  26. Qiao YH, Liu LJ, Zeng YJ (2005) A kinetic model for simulation of blood coagulation and inhibition in the intrinsic path. J Med Eng Technol 29(2): 70–74

    Article  MathSciNet  Google Scholar 

  27. Zhu D (2007) Mathematical modeling of blood coagulation cascade: kinetics of intrinsic and extrinsic pathways in normal and deficient conditions. Blood Coagul Fibrinolysis 18(7): 637–646

    Article  Google Scholar 

  28. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237(641): 37–72

    Article  ADS  Google Scholar 

  29. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybenetik 12: 30–39

    Article  Google Scholar 

  30. Meinhardt H (1982) Models of biological pattern formation. Academic Press, London

    Google Scholar 

  31. Murray JD (2003) Mathematical biology II. Springer, New York

    Google Scholar 

  32. Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7: 353–369

    Google Scholar 

  33. Kolmogorov AN, Petrovskii IG, Piskunov NS (1937) Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem. In: Bulletin de l’universite d’Etat a Moscou, Serie internationale, Section A 1, pp 1–25 (translation from French to English in: Pelce P (ed) (1988) Dynamics of curved fronts. Academic Press, Boston)

  34. Mikhailov AS (1994) Foundations of synergetics I. Distributed active systems, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  35. Ataullakhanov FI, Zarnitsyna VI, Kondratovich AYu, Sarbash VI (1997) A new class of stopping self-sustained waves: a factor determining the spatial dynamics of blood coagulation. Physics-Uspekhi (Adv Phys Sci) 172(6): 671–690

    Article  Google Scholar 

  36. Smoluchowski M (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z Phys Chem 92: 124–168

    Google Scholar 

  37. Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 1: 1–91

    Article  MathSciNet  ADS  Google Scholar 

  38. Friedlander SK (2000) Smoke, dust and haze: fundamentals of aerosol dynamics. Oxford University Press, New York

    Google Scholar 

  39. Stockmayer WH (1943) Theory of molecular size distribution and gel formation in branched-chain polymers. J Chem Phys 11(2): 45–55

    Article  ADS  Google Scholar 

  40. Leyvraz F, Tschudi HR (1981) Singularities in the kinetics of coagulation processes. J Phys A 14: 3389–3405

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Herrero MA, Rodrigo MR (2007) Remarks on accessible steady status for some coagulation-fragmentation systems. Discr Cont Dyn Syst A 17: 541–552

    MATH  MathSciNet  Google Scholar 

  42. Wiltzius P, Dietler G, Kanzing W et al (1982) Fibrin aggregation before sol–gel transition. Biophys J 38: 123–132

    Article  Google Scholar 

  43. Flory PJ (1941) Molecular size distribution in three dimensional polymers. I. Gelation. J Am Chem Soc 63: 3038–3090

    Article  Google Scholar 

  44. van Dongen P, Ernst MH (1984) Kinetics of reversible polymerization. J Stat Phys 37: 301–329

    Article  ADS  Google Scholar 

  45. Shaw SM, Kimmey MB (2000) General principles of endoscopic ultrasonographic imaging. Tech Gastrointest Endosc 2(2): 50–55

    Article  Google Scholar 

  46. Hill CR, Bamber JC, ter Haar GR (eds) (2004) Physical principles of Medical ultrasonics. Wiley, Chichester

    Google Scholar 

  47. Volkenstein MV (1977) Molecular biophysics. Academic press, New York

    Google Scholar 

  48. Sandkühler P, Sefcik J, Morbidelli M (2004) Kinetics of gel formation in dilute dispersions with strong attarctive particle interactions. Adv Colloid Interface Sci 108(109): 133–143

    Article  Google Scholar 

  49. Rickles FR, Falanga A (2001) Molecular basis for the relationship between thrombosis and cancer. Thromb Res 102: V215–V224

    Article  Google Scholar 

  50. Zwaal, RFA, Hemker, HC (eds) (1986) Blood coagulation. Elsevier, Amsterdam

    Google Scholar 

  51. FitzHugh R (1955) Mathematical models of threshold phenomena in the nerve membrane. Bull Math Biophys 17: 257–278

    Article  Google Scholar 

  52. Keener J, Sneyd J (1998) Mathematical physiology. Springer, New York

    MATH  Google Scholar 

  53. Kolobov AV, Gubernov VV, Polezhaev AA (2009) Autowaves in a model of growth of an invasive tumor. Biofizika 54(2): 334–342

    Google Scholar 

  54. Zel’dovich YaB, Frank-Kamenenetzki DA (1938) A theory of thermal propagation of flame. Acta Physicochim U.S.S.R IX(2):341–350 (in Russian) (English translation in Pelce P (ed) (1988) Dynamics of curved fronts. Academic Press, Boston)

  55. Fife PC, Mc Leod JB (1977) The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch Ration Mech Anal 65: 335–361

    Article  MATH  MathSciNet  Google Scholar 

  56. Fife PC, Mc Leod JB (1981) A phase plane discussion of convergence to travelling fronts for nonlinear diffusion. Arch Ration Mech Anal 75: 281–314

    Article  MATH  MathSciNet  Google Scholar 

  57. Belintsev BN, Dibrov BF, Livshits MA et al (1978) Nonlinear stability in distributed trigger system. Biological barrier. Biofizika (Russian) 23(5): 864–869

    Google Scholar 

  58. Lobanov AI, Starozhilova TK, Guria GT (1997) Numerical investigation of pattern formation in blood coagulation. Matematichaskoe Modelirovanie (Russian) 9(8): 83–95

    MATH  Google Scholar 

  59. Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics. Cambridge University Press, New York

    MATH  Google Scholar 

  60. Liggett JM (1994) Fluid mechanics. McGraw Hill, New York

    Google Scholar 

  61. Anderson JD Jr (1995) Computational fluid dynamics: the basics with applications. McGraw-Hill, New York

    Google Scholar 

  62. Hagen CHL (1839) Uber die Bewegung des Wassers in engen cylindrischen Rohren. Ann Phys Chem 42: 423–442

    Article  ADS  Google Scholar 

  63. Poiseuille J (1840) Recherches experimentelles sur le mouvement des liquids dans les tubes de tres petits diametres. Comptes Rendus 11: 961–1041

    Google Scholar 

  64. Schmidt, RF, Tews, G (eds) (1989) Human physiology, 2nd edn. Springer, Berlin

    Google Scholar 

  65. DeBakey ME (1997) New living heart. Adams, Holbrook

    Google Scholar 

  66. Guyton AC, Hall JE (2000) Textbook of medical physiology. WB Saunders, Philadelphia

    Google Scholar 

  67. Ataullakhanov FI, Volkova RI, Guriya GT, Sarbash VI (1995) Spatial aspects of the dynamics of blood coagulation. III. Thrombus growth in vitro. Biophysics 40: 1320–1328

    Google Scholar 

  68. Kastrup CJ, Runyon MK, Shen F, Ismagilov RF (2006) Modular chemical mechanism predicts spatiotemporal dynamics of initiation in the complex network of hemostasis. PNAS 103(43): 15747–15752

    Article  ADS  Google Scholar 

  69. Brown EB, Boucher Y, Nasser S, Jain RK. (2004) Measurement of macromolecular diffusion coefficients in human tumors. Microvasc Res 68(3): 313–314

    Article  Google Scholar 

  70. Ramanujan S, Pluen A, McKee TD, Brown EB, Boucher Y, Jain RK (2002) Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys J 83(3): 1650–1660

    Article  Google Scholar 

  71. Lewis SD, Shields PP, Shafer JA (1985) Characterization of the kinetic pathway for liberation of fibrinopeptides during assembly of fibrin. J Biol Chem 260(18): 10192–10199

    Google Scholar 

  72. Weisel JW, Veklich Y, Gorkun O (1993) The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation. J Mol Biol 232: 285–297

    Article  Google Scholar 

  73. Hantgan RR, Hermans J (1979) Assembly of fibrin. A light scattering study. J Biol Chem 254(22): 11272–11281

    Google Scholar 

  74. Bru A, Albertos S, Subiza JL et al (2003) The universal dynamics of tumor growth. Biophys J 85(5): 2948–2961

    Article  Google Scholar 

  75. Oran ES, Boris JB (1987) Numerical simulation of reactive flow. Elsevier Science, New York

    MATH  Google Scholar 

  76. Sherratt JA, Chaplain MAJ (2001) A new mathematical model for avascular tumour growth. J Math Biol 43: 291–312

    Article  MATH  MathSciNet  Google Scholar 

  77. Reynolds A, Rubin J, Clermont G et al (2006) A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol 242(1): 220–236

    Article  MathSciNet  Google Scholar 

  78. Astanin S, Tosin A (2007) Mathematical model of tumour cord growth along the source of nutrient. Math Model Nat Phenom 2(3): 153–177

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Zlobina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guria, G.T., Herrero, M.A. & Zlobina, K.E. Ultrasound detection of externally induced microthrombi cloud formation: a theoretical study. J Eng Math 66, 293–310 (2010). https://doi.org/10.1007/s10665-009-9340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9340-9

Keywords

Navigation