Skip to main content
Log in

Sensitivity analysis of significant parameters affecting landfill leachate generation rate

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 28 February 2022

This article has been updated

Abstract

A landfill was designed to evaluate leachate quantity’s governing factors using the HELP model. As a case study, the proposed methodology was tested in the Nazlou Landfill, Urmia, Iran. Indeed, the main objective was to illuminate the efficacy of executive parameters defined in the model. Lack of the final cover layer in the pre-closure period affects leachate generation as precipitation enters directly into the waste layers and changes their moisture constituents. Concerning the occurrence of the heaviest precipitation condition in the last 30 years in the pre-closure period, leachate leakage might increase to 0.23 m3/tonne of waste. Due to changes in the layers’ initial moisture, the effect of precipitation on leachate generation lasts till the landfill post-closure and would change the drained leachate from 0.083 to 0.089 m3/year-tonne of waste (this amount is generally neglected in the leachate collection system design). During pre-closure, the heaviest precipitation causes an increased generated leachate by 37.59% in the first post-closure year, which is vital especially in landfills with limited capacity treatment plants. The impact of operating conditions involves the landfill leachate generation up to different years. However, over five years of averaging, the precipitation trend was consistent with the leachate leakage. Based on the different scenarios defined regarding the meteorological conditions and design parameters, if the geomembrane layer was removed from the final cover, the leachate quantity will be increased by 79.38%. Replacing 76 cm of dense clay can overcome this challenge.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  • Abdalqader, A., & Hamad, J. (2012). Municipal solid waste composition determination supporting the integrated solid waste management in Gaza strip. International Journal of Environmental Science and Development, 3(2), 172. https://doi.org/10.7763/IJESD.2012.V3.210

    Article  Google Scholar 

  • Abunama, T., Othman, F., Alslaibi, T., & Abualqumboz, M. (2017). Quantifying the generated and percolated leachate through a landfill’s lining system in Gaza Strip Palestine. Polish. Journal of Environmental Studies, 26(6), 2455–2461. https://doi.org/10.15244/pjoes/73803

    Article  CAS  Google Scholar 

  • Abunama, T., Othman, F., Ansari, M., & El-Shafie, A. (2019). Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill. Environmental Science and Pollution Research, 26(4), 3368–3381.

    Article  Google Scholar 

  • Agwu, M. O. (2012). Issues and challenges of solid waste management practices in Port-Harcourt City, Nigeria—A behavioural perspective. American Journal of Social and Management Sciences, 3(2), 83–92. https://doi.org/10.5251/ajsms.2012.3.2.83.92

    Article  Google Scholar 

  • Aljaradin, M., & Persson, K. M. (2013). Proposed water balance equation for municipal solid waste landfills in Jordan. Waste Management & Research, 31(10), 1028–1034. https://doi.org/10.1177/0734242X13492003

    Article  Google Scholar 

  • Alimohammadi, P., Shariatmadari, N., Abdoli, M. A., Ghiasinejad, H., & Mansouri, A. (2010). Analysis of Help Model Application in semi-arid areas, study on Tehran test cells. International Journal of Civil Engineering, 8(2), 174–186.

    Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.

    Google Scholar 

  • Alslaibi, T. M., Abustan, I., Mogheir, Y. K., & Afifi, S. (2013). Quantification of leachate discharged to groundwater using the water balance method and the Hydrologic Evaluation of Landfill Performance (HELP) model. Waste Management & Research., 31(1), 50–59. https://doi.org/10.1177/0734242X12465462

    Article  CAS  Google Scholar 

  • ASTM D 5231–92 (Reapproved 2003). (2003). Standard test method for determination of the composition of unprocessed municipal solid waste. ASTM International, 6.

  • Berger, K. U. (2015). On the current state of the Hydrologic Evaluation of Landfill Performance (HELP) model. Waste Management, 38, 201–209. https://doi.org/10.1016/j.wasman.2015.01.013

    Article  Google Scholar 

  • Central Public Health & Environmental Engineering Organization (CPHEEO). (2000). Manual on Municipal Solid Waste Management. Ministry of Housing and Urban Affairs Government of India.

  • Chabuk, A., Al-Ansari, N., Alkaradaghi, K., Al-Rawabdeh, A. M. M., Laue, J., Hussain, H. M., Roland, P., & Knutsson, S. (2018a). Landfill final cover systems design for arid areas using the HELP model: A case study in the Babylon Governorate, Iraq. Sustainability, 10(12), 4568. https://doi.org/10.3390/su10124568

  • Chabuk, A., Al-Ansari, N., Ezz-Aldeen, M., Laue, J., Pusch, R., Hussain, H. M., & Knutsson, S. (2018b). Two scenarios for landfills design in special conditions using the HELP model: A case study in Babylon Governorate, Iraq. Sustainability, 10(1), 125. https://doi.org/10.3390/su10010125

  • Cline, C., Anshassi, M., Laux, S., & Townsend, T. G. (2020). Characterizing municipal solid waste component densities for use in landfill air space estimates. Waste Management & Research, 38(6), 673–679. https://doi.org/10.1177/0734242X19895324

    Article  Google Scholar 

  • Das, S., & Bhattacharyya, B. K. (2014). Estimation of municipal solid waste generation and future trends in greater metropolitan regions of Kolkata, India. Journal of Industrial Engineering and Management Innovation, 1(1), 31–38. https://doi.org/10.2991/jiemi.2014.1.1.3

    Article  Google Scholar 

  • Fatta, D., Papadopoulos, A., & Loizidou, M. (1999). A study on the landfill leachate and its impact on the groundwater quality of the greater area. Environmental Geochemistry and Health, 21(2), 175–190. https://doi.org/10.1023/A:1006613530137

    Article  CAS  Google Scholar 

  • Frikha, Y., Fellner, J., & Zairi, M. (2017). Leachate generation from landfill in a semi-arid climate: A qualitative and quantitative study from Sousse Tunisia. Waste Management & Research, 35(9), 940–948. https://doi.org/10.1177/0734242X17715102

    Article  CAS  Google Scholar 

  • Geo-Slope. (2018). GeoStudio. Available at: https://www.geoslope.com/products/geostudio. Accessed at January 2018.

  • Ghaffariraad, M., & Ghanbarzadeh Lak, M. (2021). Landfill leachate treatment through coagulation-flocculation with lime and bio-sorption by walnut-shell. Environmental Management, 1–14. https://doi.org/10.1007/s00267-021-01489-4

  • Ghanbarzadeh Lak, M., Sabour, M. R., Ghafari, E., & Amiri, A. (2018). Energy consumption and relative efficiency improvement of Photo-Fenton–Optimization by RSM for landfill leachate treatment, a case study. Waste Management., 79, 58–70. https://doi.org/10.1016/j.wasman.2018.07.029

    Article  CAS  Google Scholar 

  • Ibrahim, T. N. T., Mahmood, N. Z., & Othman, F. (2017). Estimation of leachate generation from MSW landfills in Selangor. Environmental Science., 19(1), 43–48.

    Google Scholar 

  • Iran Meteorological Organization. (2019). Iran Meteorological Organization Portal. Available at: http://www.irimo.ir/. Accessed at January 2019.

  • Jaramillo, J. (2003). Guidelines for the design, construction and operation of manual sanitary landfills. Pan American Center for Sanitary Engineering and Environmental Science.

  • Jemec, A., Tišler, T., & Žgajnar-Gotvajn, A. (2012). Assessment of landfill leachate toxicity reduction after biological treatment. Archives of Environmental Contamination and Toxicology, 62(2), 210–221. https://doi.org/10.1007/s00244-011-9703-x

    Article  CAS  Google Scholar 

  • Karabulut, A. İ., Yazici-Karabulut, B., Derin, P., Yesilnacar, M. I., & Cullu, M. A. (2021a). Landfill siting for municipal solid waste using remote sensing and geographic information system integrated analytic hierarchy process and simple additive weighting methods from the point of view of a fast-growing metropolitan area in GAP area of Turkey. Environmental Science and Pollution Research, 1–18. https://doi.org/10.1007/s11356-021-15951-7

  • Karabulut, B. Y., Derin, P., Yeşilnacar, M. İ., & Çullu, M. A. (2021b). A study on evaluation of site selection in sanitary landfill with regard to urban growth. Environmental Research and Technology, 4(2). https://doi.org/10.35208/ert.841200

  • Meegoda, J. N., Hettiarachchi, H., & Hettiaratchi, P. (2016). Landfill design and operation. Sustainable Solid Waste Management, 577–604.

  • Moody, C. M., & Townsend, T. G. (2017). A comparison of landfill leachates based on waste composition. Waste Management, 63, 267–274. https://doi.org/10.1016/j.wasman.2016.09.020

    Article  CAS  Google Scholar 

  • Nakhaei, M., Amiri, V., Rezaei, K., & Moosaei, F. (2015). An investigation of the potential environmental contamination from the leachate of the Rasht waste disposal site in Iran. Bulletin of Engineering Geology and the Environment, 74(1), 233–246. https://doi.org/10.1007/s10064-014-0577-9

    Article  CAS  Google Scholar 

  • O’leary, P. R., Tchobanoglous, G., & Kreith, F. (2002). Handbook of solid waste management: Landfilling. McGraw-Hill.

    Google Scholar 

  • Pantini, S., Verginelli, I., & Lombardi, F. (2014). A new screening model for leachate production assessment at landfill sites. International Journal of Environmental Science and Technology, 11(6), 1503–1516. https://doi.org/10.1007/s13762-013-0344-7

    Article  Google Scholar 

  • Qasim, S. R., & Chiang, W. (1994). Sanitary landfill leachate: Generation, control, and treatment. CRC Press.

    Google Scholar 

  • Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493. https://doi.org/10.1016/j.jhazmat.2007.09.077

    Article  CAS  Google Scholar 

  • Renou, S., Poulain, S., Givaudan, J. G., Sahut, C., & Moulin, P. (2009). Lime treatment of stabilized leachates. Water Science and Technology, 59(4), 673–685. https://doi.org/10.2166/wst.2009.014

    Article  CAS  Google Scholar 

  • Rhyner, C. R., Schwartz, L. J., Wenger, R. B., & Kohrell, M. G. (1995). Waste management and resource recovery (1st ed.). CRC-Press.

    Google Scholar 

  • Schroeder, P.R., Aziz, N., Lloyd, C., & Zappi, P. (1994). The hydrologic evaluation of landfill performance (HELP) model: user’s guide for version 3: Risk Reduction Engineering Laboratory, Office of Research and Development.

  • Shroff, V. S. (1999). An investigation of leachate production from MSW landfills in semi-arid climates. The University of Calgary. http://dx.doi.org/10.11575/PRISM/12995

  • Sivakumar, D. (2013). Experimental and analytical model studies on leachate volume computation from solid waste. International Journal of Environmental Science and Technology, 10(5), 903–916. https://doi.org/10.1007/s13762-012-0083-1

    Article  Google Scholar 

  • Statistical Center of Iran. (2020). Statistical Center of Iran Portal. Available at: https://www.amar.org.ir/english. Accessed at January 2020.

  • Tatsi, A., & Zouboulis, A. (2002). A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Advances in Environmental Research, 6(3), 207–219. https://doi.org/10.1016/S1093-0191(01)00052-1

    Article  CAS  Google Scholar 

  • Tolaymat, T., & Krause, M. (2020). The hydrologic evaluation of landfill performance (HELP) model: user manual for version 4.0. Homeland Security Research Program, Office of Research and Development.

  • U.S.EPA. (2017). Hydrologic Evaluation of Landfill Performance (HELP) Model. Available from: https://www.epa.gov/land-research/hydrologic-evaluation-landfill-performance-help-model. Accessed at January 2019.

  • Wang, Z. P., Zhang, Z., Lin, Y. J., Deng, N. S., Tao, T., & Zhuo, K. (2002). Landfill leachate treatment by a coagulation–photooxidation process. Journal of Hazardous Materials, 95(1–2), 153–159. https://doi.org/10.1016/S0304-3894(02)00116-4

    Article  CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011. https://doi.org/10.5402/2011/402647

  • Xu, Q., Kim, H., Jain, P., & Townsend, T. G. (2012). Hydrologic evaluation of landfill performance (HELP) modeling in bioreactor landfill design and permitting. Journal of Material Cycles and Waste Management, 14(1), 38–46. https://doi.org/10.1007/s10163-011-0035-8

    Article  CAS  Google Scholar 

  • Yalcin, F., & Demirer, G. (2002). Performance evaluation of landfills with the HELP (hydrologic evaluation of landfill performance) model: Izmit case study. Environmental Geology, 42(7), 793–799. https://doi.org/10.1007/s00254-002-0582-3

    Article  CAS  Google Scholar 

  • Yang, N., Damgaard, A., Kjeldsen, P., Shao, L. M., & He, P. J. (2015). Quantification of regional leachate variance from municipal solid waste landfills in China. Waste Management, 46, 362–372. https://doi.org/10.1016/j.wasman.2015.09.016

    Article  CAS  Google Scholar 

  • Yesilnacar, M. I., & Cetin, H. (2005). Site selection for hazardous wastes: A case study from the GAP area Turkey. Engineering Geology, 81(4), 371–388. https://doi.org/10.1016/j.enggeo.2005.07.012

    Article  Google Scholar 

  • Yesilnacar, M. I., & Cetin, H. (2008). An environmental geomorphologic approach to site selection for hazardous wastes. Environmental Geology, 55(8), 1659–1671. https://doi.org/10.1007/s00254-007-1115-x

    Article  Google Scholar 

  • Yesilnacar, M. I., Süzen, M. L., Kaya, B. Ş, & Doyuran, V. (2012). Municipal solid waste landfill site selection for the city of Şanliurfa-Turkey: An example using MCDA integrated with GIS. International Journal of Digital Earth, 5(2), 147–164. https://doi.org/10.1080/17538947.2011.583993

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ghanbarzadeh Lak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Introducing a new method in using the HELP model to estimate leachate quantity.

• Minimizing the leachate volume estimation error by modifying the HELP input data.

• Analysis of MSW composition and presentation of a landfill conceptual design.

• Investigation of the hydrological condition of the pre-closure period on leachate generation.

• Assessing precipitation effect as the most significant factor on leachate generation rate.

• Moving towards sanitary–economical landfill design by removing the geomembrane layer.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1044 KB)

Supplementary file2 (DOCX 55 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffariraad, M., Ghanbarzadeh Lak, M. & Ebrahimi Sarindizaj, E. Sensitivity analysis of significant parameters affecting landfill leachate generation rate. Environ Monit Assess 194, 12 (2022). https://doi.org/10.1007/s10661-021-09653-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09653-3

Keywords

Navigation