Skip to main content
Log in

Bubble size distribution in a laboratory-scale electroflotation study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The performance of electroflotation (EF) is strongly influenced by the size of O2 and H2 bubbles. Therefore, in this study, the bubble sizes are measured in a lab-scale EF cell using a high-speed camera. The mean bubble size is found to vary in the range of 32.7–68.6 μm under different operating conditions. This study shows that the electrode material, current density, water pH, ionic strength, and frother (Tennafroth 250) concentration are important factors in controlling the bubble size. Furthermore, four mathematical distributions (normal, log-normal, Weibull, and gamma distributions) are fitted to the experimental data, among which the log-normal distribution is found to be the best fit based on the lower Anderson-Darling (AD) value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ahmed, N., & Jameson, G. J. (1985). The effect of bubble size on the rate of flotation of fine particles. International Journal of Mineral Processing, 14, 195–215.

    Article  CAS  Google Scholar 

  • Al-Hayes, R. A. M., & Winterton, R. H. S. (1981). Bubble diameter on detachment in flowing liquids. International Journal of Heat and Mass Transfer, 24, 213–331.

    Article  Google Scholar 

  • Alam, R., & Shang, J. Q. (2016). Electrochemical model of electro-flotation. Journal of Water Process Engineering, 12, 78–88.

    Article  Google Scholar 

  • Alam, R., & Shang, J. Q. (2017). Removal of bitumen from mature oil sands tailings slurries by electro-flotation. Journal of Water Process Engineering, 15, 116–123.

    Article  Google Scholar 

  • Alam, R., Shang, J. Q., & Cheng, X. (2011). Optimization of digestion parameters for analyzing the total sulphur of mine tailings by inductive coupled plasma optical emission spectrometry. Environmental Monitoring and Assessment (Springer), 184(5)), 3373–3387.

    Google Scholar 

  • Alam, R., Shang, J. Q., & Islam, S. (2017). Electrophoresis and its applications in oil sand tailings management. International Journal of Mineral Processing, 161, 41–49.

    Article  CAS  Google Scholar 

  • Bande, R. M., Prasad, B., Mishra, I. M., & Wasewar, K. L. (2008). Oil field effluent water treatment for safe disposal by electro-flotation. Chemical Engineering Journal, 137, 503–509.

    Article  CAS  Google Scholar 

  • Beer, H. B. 1972. U.S. Patent 3,632,498.

  • Bennet, A. J. R., Chapmen, W. R., Dell, C. C. 1958. Studies in the froth flotation of coal. Third International Coal Preparation Conngress, Brussels-Leige.

  • Biswal, S. K., Reddy, P. S. R., & Bhaumik, S. K. (2009). Bubble size distribution in a flotation column. The Canadian Journal of Chemical Engineering, 72(1), 148–152. doi:10.1002/cjce.5450720123.

    Article  Google Scholar 

  • Brandon, N. P., & Kelsall, G. H. (1985). Interfacial electrical properties of electrogenerated bubbles. Journal of Applied Electrochemistry, 15, 485–493.

    Article  CAS  Google Scholar 

  • Burns, S. E., Yiacoumi, S., & Tsouris, C. (1997). Microbubble generation for environmental and industrial separations. Separation and Purification Technology, 11, 221–232.

    Article  CAS  Google Scholar 

  • Chen, X., Chen, G. 2010. Electro-flotation. In C. Comninellis & G. Chen (Eds.), Electrochemistry for the environment, Springer Science+Business Media, LLC. 263–77.

  • Cho, Y. S., & Laskowski, J. S. (2002). Effect of flotation frothers on bubble size and foam stability. International Journal of Mineral Processing, 64, 69–80.

    Article  CAS  Google Scholar 

  • Coleman, R. 2009. Outotec, more out of ore. Outotec Australia’s quarterly e-newsletter, issue 25.

  • Cruz, S. G., Dutra, A. J. B., & Monte, M. B. M. (2016). The influence of some parameters on bubble average diameter in an electroflotation cell by laser diffraction method. Journal of Environmental Chemical Engineering, 4, 3681–3687.

    Article  Google Scholar 

  • Dai, J., Xie, G., Liu, S., & Wang, X. (2007). Analysis of influencing factors of flotation bubble size. Coal Preparation Technology, 3, 7–10.

    Google Scholar 

  • Fatima, M., & Fortes, M. A. (1988). Grain size distribution: the log-normal and the gamma distribution function. Scripta Metallurgica, 22, 35–40.

    Article  Google Scholar 

  • Fukui, Y., & Yuu, S. (1985). Removal of colliodal particles in electro-flotation. AICHE Journal, 31(2), 201–208.

    Article  CAS  Google Scholar 

  • Glembotsky, V. A., Mamakov, A. A., & Sorokina, V. N. (1973). Electroannaya Obrabotka Materialov, 5, 66.

    Google Scholar 

  • Gorain, B. K., Franzidis, J.-P., & Manlapig, E. V. (1995a). Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell—part 1: effect on bubble size distribution. Minerals Engineering, 8(6), 615–635.

    Article  Google Scholar 

  • Gorain, B. K., Franzidis, J.-P., & Manlapig, E. V. (1995b). Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell part 2: effect on gas holdup. Minerals Engineering, 8(12), 1557–1570.

    Article  CAS  Google Scholar 

  • Gorain, B. K., Franzidis, J.-P., & Manlapig, E. V. (1997). Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell. Part 4: effect of bubble surface area flux on flotation performance. Minerals Engineering, 10(4), 367–379.

    Article  CAS  Google Scholar 

  • Grau, R. A., & Heiskanen, K. (2005). Bubble size distribution in laboratory scale flotation cells. Minerals Engineering, 18, 1164–1172.

    Article  CAS  Google Scholar 

  • Grau, R. A., & Laskowski, J. S. (2006). Role of frothers in bubble generation and coalescence in a mechanical flotation cell. The Canadian Journal of Chemical Engineering, 84, 170–182.

    Article  CAS  Google Scholar 

  • Grau, R. A., Laskowski, J. S., & Heiskanen, K. (2005). Effect of frothers on bubble size. International Journal of Mineral Processing, 76, 225–233.

    Article  CAS  Google Scholar 

  • Heiskanen, K. (2000). On the relationship between flotation rate and bubble surface area flux. Minerals Engineering, 13(2), 141–149.

    Article  CAS  Google Scholar 

  • Ibl, N., & Venczel, I. (1970). Metalloberflache, 34, 365.

    Google Scholar 

  • Jiménez, C., Talavera, B., Sáez, C., Canizares, P., & Rodrigo, M. A. (2010). Study of the production of hydrogen bubbles at low current densities for electro-flotation processes. Journal of Chemical Technology and Biotechnology, 85, 1368–1373.

    Article  Google Scholar 

  • Ketkar, D. R., Mallikarjunan, R., & Venkatachalam, S. (1991). Electro-flotation ofquartz fines. International Journal of Mineral Processing, 31, 127–138.

    Article  CAS  Google Scholar 

  • Khosla, N. K., Venkatachalam, S., & Somasundaran, P. (1991). Pulsed electrogeneration of bubbles for electro-flotation. Journal of Applied Electrochemistry, 21, 986–990.

    Article  CAS  Google Scholar 

  • Landolt, D., Acosta, R., Muller, R. H., & Tobais, C. W. (1970). An optical study of cathodic hydrogen evolution in high rate electrolysis. Journal of the Electrochemical Society, 117(6), 839–845.

    Article  Google Scholar 

  • Lee, S. M. (1969). Effect of equivalent bubble sizes on the flotability of single bubble forth flotation. Journal of AIChE, 7, 202–213.

    Google Scholar 

  • Liuyi, R., Zhang, Y., Qin, W., Bao, S., Wang, P., & Yang, C. (2014). Investigation of condition-induced bubble size and distribution in electro-flotation using a high-speed camera. International Journal of Mining Science and Technology, 24, 7–12.

    Article  Google Scholar 

  • Lumanauw, D. 2000. Hydrogen bubble characterization in alkaline water electrolysis, thesis of Master of Applied Science, Department of Metallurgy and Materials Science, University of Toronto.

  • Mÿmicci, G., & Nicoderno, L. (1967). Chemical Engineering Science, 27, 1257.

    Google Scholar 

  • Oktepe, G. F. (2002). Effect of pH on pulp potential and sulphide mineral flotation. Turkish Journal of Engineering and Environmental Science, 26, 309–318.

    Google Scholar 

  • Pacek, A., Man, C., & Nienow, A. (1998). On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel. Chemical Engineering Science, 53(11), 2005–2011.

    Article  CAS  Google Scholar 

  • Raju, G. B., & Khangaonkar. (1984). Electro-flotation—a critical review. Transactions of the Indian Institute of Metals, 37(1), 59–66.

    CAS  Google Scholar 

  • Sarkar, M. S. K. A., Evans, G. M., & Donne, S. W. (2010a). Bubble size measurement in electro-flotation. Minerals Engineering, 23, 1058–1065.

    Article  CAS  Google Scholar 

  • Sarkar, M. S. K. A., Donne, S. W., & Evans, G. M. (2010b). Hydrogen bubble flotation of silica. Advanced Powder Technology, 21, 412–418.

    Article  CAS  Google Scholar 

  • Sides, P. J. (1986). Modern aspects of electrochemistry. In R. E. White, J. O. N. Bokris, & B. E. Conway (Eds.), Phenomenon and effects of electrolytic gas evolution (pp. 303–354). New York: Plenum.

    Google Scholar 

  • Silva, EL and Lisboa, P. 2007. Analysis of the characteristic features of the density functions for gamma, Weibull and log-normal distributions through RBF network pruning with QLP Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February 16–19, 2007

  • Stephens, M. A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69, 730–737.

    Article  Google Scholar 

  • Tavlarides, L., & Stamatoudis, M. (1981). The analysis of interphase reactions and mass transfer in liquid–liquid dispersions. Advances in Chemical Engineering, 11, 199–273.Tijms, H.C. (2003). A first course in stochastic models. Ámsterdam :Vrije Universiteit

  • Vogt, H. (1984). The rate of gas evolution of electrodes—I. An estimate of the efficiency of gas evolution from the supersaturation of electrolyte adjacent to a gas-evolving electrode. Electrochimica Acta, 29(2), 167–173.

  • Vogt, H. (1989). The problem of the departure diameter of bubbles at gas-evolving electrodes. Electrochemica Acta, 34(10), 1429–1432.Vogt, H. (1983). In Comprehensive treatise of electrochemistry (edited by E. Yeager, J. O’M. Bockris, B. E. Conway and S. Sarangapani), Plenum Press, New York, Vol. 6, 445.

  • Wei, S., Liang, M., Yuehua, H., Yanhong, D., & Gang, Z. 2011. Hydrogen bubble flotation of fine minerals containing calcium. Mining Science and Technology (China), 21(2011), 591–597.

  • Yoon, R.-H. (2000). International Journal of Mineral Processing, 58, 129–143.

    Article  CAS  Google Scholar 

  • Zhang, L., Li, T., Ying, W.-y., & Fang, D.-y. (2008). Rising and descending bubble size distributions in gas–liquid and gas–liquid–solid slurry bubble column reactor. Chemical Engineering Research and Design, 86, 1143–1154.

    Article  CAS  Google Scholar 

  • Ziemenski, S. A., & Whittemore, R. C. (1971). Chemical Engineering Science, 26, 509–520.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Puneet Verma for his help during the research. The authors are also thankful to the Associate Editor of EMAS and the anonymous reviewers for their valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquibul Alam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, R., Shang, J.Q. & Khan, A.H. Bubble size distribution in a laboratory-scale electroflotation study. Environ Monit Assess 189, 193 (2017). https://doi.org/10.1007/s10661-017-5888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5888-4

Keywords

Navigation