Skip to main content

Advertisement

Log in

Early detection monitoring for larval dreissenid mussels: how much plankton sampling is enough?

Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The development of quagga and zebra mussel (dreissenids) monitoring programs in the Pacific Northwest provides a unique opportunity to evaluate a regional invasive species detection effort early in its development. Recent studies suggest that the ecological and economic costs of a dreissenid infestation in the Pacific Northwest of the USA would be significant. Consequently, efforts are underway to monitor for the presence of dreissenids. However, assessments of whether these efforts provide for early detection are lacking. We use information collected from 2012 to 2014 to characterize the development of larval dreissenid monitoring programs in the states of Idaho, Montana, Oregon, and Washington in the context of introduction and establishment risk. We also estimate the effort needed for high-probability detection of rare planktonic taxa in four Columbia and Snake River reservoirs and assess whether the current level of effort provides for early detection. We found that the effort expended to monitor for dreissenid mussels increased substantially from 2012 to 2014, that efforts were distributed across risk categories ranging from high to very low, and that substantial gaps in our knowledge of both introduction and establishment risk exist. The estimated volume of filtered water required to fully census planktonic taxa or to provide high-probability detection of rare taxa was high for the four reservoirs examined. We conclude that the current level of effort expended does not provide for high-probability detection of larval dreissenids or other planktonic taxa when they are rare in these reservoirs. We discuss options to improve early detection capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Balcer, M.D., Korda, N.L. & Dodson, S.I. (1984). Zooplankton of the Great Lakes: a guide to the identification and ecology of the common crustacean species. The University of Wisconsin Press, Madison, Wisconsin, USA. pp. 174.

  • Barry, S. (2004). Sampling designs for pest monitoring programs; design considerations. Bureau of Rural Sciences, Australian Government Department of Agriculture, Fisheries, and Forestry, Canberra, ACT, Australia.

  • Bax, N., Hayes, K., Marshall, A., Parry, D. & Thresher, R. (2002). Man-made marinas as sheltered islands for alien marine organisms: establishment and eradication of an alien invasive marine species. Pages 26–39 in C. R. Veitch and M. N. Clout, editors. Turning the tide: the eradication of invasive species. IUCN SSC Invasive Species Specialist GroupIUCN [World Conservation Union], Gland, Switzerland, and Cambridge, UK.

  • Bollens, S., Breckenridge, J., Cordell, J., Rollwagen-Bollens, G., & Kalata, O. (2012). Invasive copepods in the lower Columbia River estuary: seasonal abundance, co-occurrence and potential competition with native copepods. Aquatic Invasions, 7, 101–109.

    Article  Google Scholar 

  • Buskey, E. J., & Hyatt, C. J. (2006). Use of the FlowCAM for semi-automated recognition and enumeration of red tide cells (Karenia brevis) in natural plankton samples. Harmful Algae, 5(6), 685–692.

    Article  Google Scholar 

  • Chao, A. (1987). Estimating the population size for capture–recapture data with unequal catchability. Biometrics, 43(4), 783–791. doi:10.2307/2531532.

    Article  CAS  Google Scholar 

  • Chao, A., Colwell, R. K., Lin, C. W., & Gotelli, N. J. (2009). Sufficient sampling for asymptotic minimum species richness estimators. Ecology, 90(4), 1125–1133. doi:10.1890/07-2147.1.

    Article  Google Scholar 

  • Colwell, R.K. (2006). EstimateS software [online]. Available at http:// viceroy.eeb.uconn.edu/EstimateS [accessed 29 July 2009].

  • Connelly, N. A., O’Neill Jr., C. R., Knuth, B. A., & Brown, T. L. (2007). Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities. Environmental Management, 40(1), 105–112. doi:10.1007/s00267-006-0296-5.

    Article  Google Scholar 

  • Cordell, J.R. (2012). Invasive copepods of North America. In: R.A. Francis (Ed.), A handbook of global freshwater invasive species (pp. 161-172). Oxford, UK: Earthscan Publications Ltd.

  • Costello, C. J., & Solow, A. R. (2003). On the pattern of discovery of introduced species. Proceedings of the National Academy of Sciences, 100(6), 3321–3323.

    Article  CAS  Google Scholar 

  • Day, J. G., Thomas, N. J., Achilles-Day, U. E., & Leakey, R. J. (2012). Early detection of protozoan grazers in algal biofuel cultures. Bioresource Technology, 114, 715–719.

    Article  CAS  Google Scholar 

  • Dexter, E., Bollens, S. M., Rollwagen-Bollens, G., Emerson, J., & Zimmerman, J. (2015). Persistent vs. ephemeral invasions: 8.5 years of zooplankton community dynamics in the Columbia River. Limnology and Oceanography, 60, 527–539.

    Article  Google Scholar 

  • Edmondson, W.T. (1959). Freshwater biology, 2nd edn. John Wiley & Sons, Inc., New York, USA.

  • Egan, S. P., Barnes, M. A., Hwang, C. T., Mahon, A. R., Feder, J. L., Ruggiero, S. T., et al. (2013). Rapid invasive species detection by combining environmental DNA with light transmission spectroscopy. Conserv Lett, 6(6), 402–409.

    Article  Google Scholar 

  • Emerson, J. E., Bollens, S. M., & Counihan, T. (2015). Seasonal dynamics of zooplankton in Columbia-Snake River system reservoirs, with special reference to the invasive copepod Pseudodiaptomus forbesi. Aquatic Invasions, 10, 25–40.

    Article  Google Scholar 

  • Finnoff, D., Shogren, J. F., Leung, B., & Lodge, D. (2007). Take a risk: preferring prevention over control of biological invaders. Ecological Economics, 62(2), 216–222.

    Article  Google Scholar 

  • Fitzpatrick, M. C., Preisser, E. L., Ellison, A. M., & Elkinton, J. S. (2009). Observer bias and the detection of low density populations. Ecological Applications, 19(7), 1673–1679. doi:10.1890/09-0265.1.

    Article  Google Scholar 

  • Giffin, N. (2012). Privacy issues surrounding the tracking and sharing of boat movement information as part of invasive species prevention programs. Arizona Journal of Environmental and Legal Policy, 3, 141–156.

    Google Scholar 

  • Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379–391.

    Article  Google Scholar 

  • Harvey, C. T., Qureshi, S. A., & MacIsaac, H. J. (2009). Detection of a colonizing, aquatic, non-indigenous species. Diversity and Distributions, 15(3), 429–437.

    Article  Google Scholar 

  • Hassett, W., Bollens, S.M., Counihan, T., Rollwagen-Bollens, G., Zimmerman, J. & Emerson, J. (2016) Veligers of the invasive Asian clam Corbicula fluminea in the Columbia River Basin: broadscale distribution, abundance and ecological associations. Lake and Reservoir Management.

  • Hayes, K. R., Canaon, R., Neil, K., & Inglis, G. (2005). Sensitivity and cost considerations for the detection and eradication of marine pests in ports. Marine Pollution Bulletin, 50, 823–834.

    Article  CAS  Google Scholar 

  • Higgins, S. N., & Zanden, M. V. (2010). What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs, 80(2), 179–196.

    Article  Google Scholar 

  • Hoffman, J. C., Kelly, J. R., Trebitz, A. S., Peterson, G. S., & West, C. W. (2011). Effort and potential efficiencies for aquatic nonnative species early detection. Canadian Journal of Fisheries and Aquatic Science, 68, 2064–2079.

    Article  Google Scholar 

  • Heimowitz, P. & Phillips, S. (2011). Columbia River Basin Interagency Invasive Species Response Plan: zebra mussels and other dreissenid species prepared for the 100th Meridian Initiative Columbia River Basin Team. pp. 232

  • Hulme, P. E. (2006). Beyond control: wider implications for the management of biological invasions. Journal of Applied Ecology, 43(5), 835–847.

    Article  Google Scholar 

  • Idaho State Department of Agriculture (ISDA). (2012). A review of the state of Idaho dreissenid mussel prevention and contingency plans. Idaho Department of Agriculture, Aquatic Ecosystem Restoration Foundation, and Pacific States Marine Fisheries Commission. February.

  • Independent Economic Analysis Board (IEAB). (2010). Economic risk associated with the potential establishment of zebra and quagga mussels in the Columbia River Basin. Task Number 159. Document IEAB 2010-1.

  • Independent Economic Analysis Board (IEAB). (2013). Invasive mussels update, economic risk associated with the potential establishment of zebra and quagga mussels in the Columbia River Basin. Task Number 201. Document IEAB 2013–2

  • Inglis, G. J., Hurren, H., Oldman, J., & Haskew, R. (2006). Using habitat suitability index and particle dispersion models for early detection of marine invaders. Ecological Applications, 16(4), 1377–1390.

    Article  Google Scholar 

  • Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150–157.

    Article  Google Scholar 

  • Jerde, C. L., Chadderton, W. L., Mahon, A. R., Renshaw, M. A., Corush, J., Budny, M. L., et al. (2013). Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Canadian Journal of Fisheries and Aquatic Sciences, 70(4), 522–526.

    Article  CAS  Google Scholar 

  • Kammerer, J.C. (1990). Largest rivers in the United States. United States Geological Survey. Retrieved 2008–01-26.

  • Lee, D. J., Adams, D. C., & Rossi, F. (2007). Optimal management of a potential invader: the case of zebra mussels in Florida. Journal of Agricultural and Applied Economics, 39, 69–81.

    Article  Google Scholar 

  • Leung, B., Lodge, D. M., Finnoff, D., Shogren, J. F., Lewis, M. A., & Lamberti, G. (2002). An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proceedings of the Royal Society of London B: Biological Sciences, 269(1508), 2407–2413.

    Article  Google Scholar 

  • Lodge, D. M., Williams, S., MacIsaac, H. J., Hayes, K. R., Leung, B., Reichard, S., et al. (2006). Biological invasions: recommendations for U.S. policy and management. Ecological Applications, 16(6), 2035–2054. doi:10.1890/1051-0761(2006)016[2035: BIRFUP]2.0.CO;2.

    Article  Google Scholar 

  • MacIsaac, H. J. (1996). Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. American Zoologist, 36(3), 287–299.

    Article  Google Scholar 

  • MacIsaac, H. J., Robbins, T. C., & Lewis, M. A. (2002). Modeling ships’ ballast water as invasion threats to the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1245–1256.

    Article  Google Scholar 

  • Mahon, A. R., Jerde, C. L., Galaska, M., Bergner, J. L., Chadderton, W. L., Lodge, D. M., et al. (2013). Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PloS One, 8(3), e58316.

    Article  CAS  Google Scholar 

  • Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S., & Venette, R. C. (2007). Optimal detection and control strategies for invasive species management. Ecological Economics, 61(2–3), 237–245.

    Article  Google Scholar 

  • Mackie, G. L., & Schloesser, D. W. (1996). Comparative biology of zebra mussels in Europe and North America: an overview. American Zoologist, 36(3), 244–258.

    Article  Google Scholar 

  • McMahon, R. F., & Ussary, T. A. (1995). Thermal tolerance of zebra mussels (Dreissena polymorpha) relative to rate of temperature increase and acclimation temperature. Texas University at Arlington Department of Biology

  • Mills, E. L., Rosenberg, G., Spidle, A. P., Ludyanskiy, M., Pligin, Y., & May, B. (1996). A review of the biology and ecology of the quagga mussel (Dreissena bugensis), a second species of freshwater dreissenid introduced to North America. American Zoologist, 36(3), 271–286.

    Article  Google Scholar 

  • Myers, J. H., Simberloff, D., Kuris, A. M., & Carey, J. R. (2000). Eradication revisited: dealing with exotic species. Trends in Ecology and Evolution, 15, 316–320.

    Article  CAS  Google Scholar 

  • Nalepa, T.F. & Schloesser, D.W. eds. (1992). Zebra mussels biology, impacts, and control. CRC Press.

  • Oregon Department Fish and Wildlife (ODFW). (2012). Oregon’s Aquatic Invasive Species Prevention Program 2012 Program Report.

  • Park, J. & Hushak, L.J. (1999). Zebra mussel control costs in surface water using facilities. Technical summary No. OHSU-TS-028. Ohio Sea Grant College Program, Ohio State University, Columbus, OH pp. 15

  • Prescott, T. H., Claudi, R., & Prescott, K. L. (2013). Impact of dressenid mussels on the infrastructure of dams and hydroelectric power plants. In T. F. Nalepa & D. W. Schlosser (Eds.), Quagga and zebra mussels: biology, impacts, and control (Second ed., pp. 315–329). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R., & Gough, K. C. (2014). Review: the detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. Journal of Applied Ecology, 51(5), 1450–1459.

    Article  CAS  Google Scholar 

  • Robinson, D.C.E., Knowler, D., Kyobe, D., & de la Cueva Bueno, P. (2013). Preliminary damage estimates for selected invasive fauna in B.C. Report prepared for Ecosystems Branch, B.C. Ministry of Environment, Victoria, B.C. by ESSA Technologies Ltd., Vancouver, B.C. p. 62.

  • Roper, J., Cherry, D., & Simmers, J. (1995). Sediment toxicity and bioaccumulation of contaminants in the zebra mussel at Times Beach, Buffalo, New York. U.S. Army Corps of Engineers

  • Sieracki, M. E., Benfield, M., Hanson, A., Davis, C., Pilskaln, C. H., Checkley, D., et al. (2010). Optical plankton imaging and analysis systems for ocean observation. Proceedings of ocean Obs, (9), 21–25.

  • Sytsma, Mark D., Phillips, S., & Counihan, T.D. “Dreissenid Mussel Research Priorities Workshop” (2015).Center for Lakes and Reservoirs Publications and Presentations. Paper 49. http://pdxscholar.library.pdx.edu/centerforlakes_pub/49

  • Tatem, H. & Theriot, E. (1994). Bioaccumulation of contaminants by zebra mussels, U.S. Army Corps of Engineers Zebra Mussel Research Technical Notes ZMR-1-16. USACE Waterways Experiment Station, Vicksburg. MS.

  • Thorp, J.H. & Covich, A.P. (eds). 2010. Ecology and Classification of North American Freshwater Invertebrates, 3rd edn. Academic Press, San Diego, USA. pp. 1021.

  • Vanderploeg, H. A., Liebig, J. R., & Gluck, A. A. (1996). Evaluation of different phytoplankton for supporting development of zebra mussel larvae (Dreissena polymorpha): the importance of size and polyunsaturated fatty acid content. Journal of Great Lakes Research, 22(1), 36–45.

    Article  CAS  Google Scholar 

  • Wells, S.W., Counihan, T.D., Puls, A., Sytsma, M., & Adair, B. (2011). Prioritizing zebra and quagga mussel monitoring in the Columbia River Basin. Center for Lakes and Reservoirs Publications and Presentations. Paper 10. http://pdxscholar.library.pdx.edu/centerforlakes_pub/10

  • Whittier, T. R., Ringold, P. L., Herlihy, A. T., & Pierson, S. M. (2008). A calcium-based invasion risk assessment for zebra and quagga mussels (Dreissena spp). Frontiers in Ecology and the Environment, 6(4), 180–184.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Glen Holmberg, Nancy Elder, John Kosovich, and Jill Hardiman of the U.S. Geological Survey (USGS) and Gretchen Rollwagen-Bollens, Julie Zimmerman, Whitney Hassett, and Josh Emerson of Washington State University (WSU) for their assistance with various aspects of this project. Funding for this project was provided by the US Department of Energy/Bonneville Power Administration (Grant #00059650), by the USGS (Grant G09AC00264), and by additional funding provided by WSU and the USGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Counihan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Counihan, T.D., Bollens, S.M. Early detection monitoring for larval dreissenid mussels: how much plankton sampling is enough?. Environ Monit Assess 189, 98 (2017). https://doi.org/10.1007/s10661-016-5737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5737-x

Keywords

Navigation