Skip to main content

Advertisement

Log in

Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbaspour, H., Saeidi-Sar, S., Afshari, H., & Abdel-Wahhab, M. A. (2012). Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Journal of Plant Physiology, 169, 704–709.

    Article  CAS  Google Scholar 

  • Alexander, T., Meier, R., Toth, R., & Weber, H. C. (1988). Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays L. New Phytologist, 110, 363–370.

    Article  Google Scholar 

  • Alguacil, M. M., Hernandez, J. A., Caravaca, F., Portillo, B., & Roldan, A. (2003). Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiologia Plantarum, 118, 562–570.

    Article  CAS  Google Scholar 

  • Ali, N., Masood, S., Mukhtar, T., Kamran, M. A., Rafique, M., Munis, M. F. H., et al. (2015). Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environmental Monitoring and Assessment, 187, 1–11.

    Article  Google Scholar 

  • Arnone, D. I. (1949). Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–5.

    Article  Google Scholar 

  • Asrar, A. A., Abdel-Fattah, G. M., & Elhindi, K. M. (2012). Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica, 50, 305–316.

    Article  CAS  Google Scholar 

  • Auge, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.

    Article  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–208.

    Article  CAS  Google Scholar 

  • Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91, 179–194.

    Article  CAS  Google Scholar 

  • Chen, J. X., & Wang, X. F. (2002). Guide to plant physiological experiments (pp. 123–127). Guangzhou: South China University of Technology Press.

    Google Scholar 

  • Conklin, P. L. (2001). Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant, Cell and Environment, 24, 383–394.

    Article  CAS  Google Scholar 

  • Corradi, N., Buffner, B., Croll, D., Colard, A., Horak, A., & Sanders, I. R. (2009). High-level molecular diversity of copper–zinc superoxide dismutase genes among and within species of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 75, 1970–1978.

    Article  CAS  Google Scholar 

  • Fagbola, O., Osonubi, O., Mulongox, K., & Odunfa, S. A. (2001). Effects of drought stress and arbuscular mycorrhiza on the growth of Gliricdia sepium (Jacq). Walp, Leucaenal leucocephala (Lam). De wit. In simulated eroded soil conditions. Mycorrhiza, 11, 215–223.

    Article  Google Scholar 

  • Feng, X., He, Y., Fang, J., Fang, Z., Jiang, B., Brancourt-Hulmel, M., et al. (2015). Comparison of the growth and biomass production of Miscanthus sinensis, Miscanthus floridulus and Saccharum arundinaceum. Spanish Journal of Agricultural Research. doi:10.5424/sjar/2015133-7262.

    Google Scholar 

  • Fini, A., Frangi, P., Amoroso, G., Piatti, R., Faoro, M., Bellasio, C., et al. (2011). Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes. Mycorrhiza, 21, 703–719.

    Article  Google Scholar 

  • Folin, O., & Denis, W. (1915). A colorimetric method for the determination of phenols (and phenol derivatives) in urine. Journal of Biological Chemistry, 22, 305–308.

    CAS  Google Scholar 

  • Gaspar, T., Penel, C., & Greppin, H. (1975). Peroxidase and isoperoxidase in relation to root and flower formation. The Plant Biochemistry Journal, 2, 33–47.

    CAS  Google Scholar 

  • Gerdeman, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet-sieving and decanting. Transactions of the British Mycological Society, 46, 235–244.

    Article  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Super oxide dismutase—occurrence in higher plants. Plant Physiology, 59, 309–314.

    Article  CAS  Google Scholar 

  • Giardi, M. T., Masojidek, J., & Godde, D. (1997). Effects of abiotic stress on the turnover of the DI reaction center II protein. Plant Physiology, 101, 635–642.

    Article  CAS  Google Scholar 

  • Giovannetti, M., & Mosse, D. (1980). An evaluation technique for measuring VAM infection in roots. New Phytologist, 84, 489–500.

    Article  Google Scholar 

  • Gutjahr, C., & Parniske, M. (2013). Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annual Review of Cell and Developmental Biology, 29, 593–617.

    Article  CAS  Google Scholar 

  • Hare, P. D., & Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21, 79–102.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Phytoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  • Hetrick, B. A. D., Kitt, D. G., & Wilson, G. T. (1987). Effects of drought stress on growth response in corn, sudan grass, and big bluestem to Glomus etunicatum. New Phytologist, 105, 403–410.

    Article  Google Scholar 

  • Hinckley, T. M., Duhme, F., Hinckley, A. R., & Richter, H. (1980). Water relations of drought hardy shrubs: osmotic potential and stomatal reactivity. Plant, Cell & Environment, 3, 131–140.

    Google Scholar 

  • Huang, R., Su, R., Qi, W., & He, Z. (2011). Bioconversion of lignocellulose into bioethanol: process intensification and mechanism research. Bioenergy Research, 4, 225–245.

    Article  Google Scholar 

  • Huang, Y. M., Srivastava, A. K., Zou, Y. N., Ni, Q. D., Han, Y., & Wu, Q. S. (2014). Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Frontiers in Microbiology, 5, 682.

    Article  Google Scholar 

  • Hura, T., Grzesiak, S., Hura, K., Thiemt, E., Tokarz, K., & Wedzony, M. (2007). Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Annals of Botany, 100, 767–775.

    Article  CAS  Google Scholar 

  • Jacobson, K. M. (1997). Moisture and substrate stability determine VA-mycorrhizal fungal community distribution and structure in an arid grassland. Journal of Arid Environments, 35, 59–75.

    Article  Google Scholar 

  • Janeeshma, E., Mirshad, P. P., & Puthur, J. T. (2016). Dynamics of arbuscular mycorrhizal development in relation to various growth stages of Zea mays. In S. Das (Ed.), Climate change and its impact on water resources of Kerala (pp. 1975–1979) . Kerala: University of Calicut.28th KSC

    Google Scholar 

  • Kavi Kishor, P. B., Sangam, S., Amrutha, R. N., Laxmi, P. S., Naidu, K. R., Rao, K. R. S. S., et al. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424–438.

    Google Scholar 

  • Kaya, C., Higgs, D., Kirnak, H., & Tas, I. (2003). Mycorrhizal colonisation improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions. Plant and Soil, 253, 287–292.

    Article  CAS  Google Scholar 

  • Kyriazopoulos, A. P., Orfanoudakis, M., Abraham, E. M., Parissi, Z. M., & Serafidou, N. (2014). Effects of arbuscular mycorrhiza fungi on growth characteristics of Dactylis glomerata L. under drought stress conditions. Notulae Botanicae Horti Agrobotanici, 42, 132–137.

    Google Scholar 

  • Lee, B. R., Muneer, S., Avice, J. C., Jung, W. J., & Kim, T. H. (2012). Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza, 22, 525–534.

    Article  CAS  Google Scholar 

  • Leufen, G., Noga, G., & Mauricio, H. (2013). Physiological response of sugar beet (Beta vulgaris) genotypes to a temporary water deficit, as evaluated with a multi parameter fluorescence sensor. Acta Physiologiae Plantarum, 35, 1763–1774.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin-phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Mirshad, P. P., Chandran, S., & Puthur, J. T. (2014). Characteristics of bioenergy grasses important for enhanced NaCl tolerance potential. Russian Journal of Plant Physiology, 61, 639–645.

    Article  CAS  Google Scholar 

  • Mirshad, P. P., & Puthur, J. T. (2015). AM association of some prominent energy grasses in natural habitats. In K. V. Mohanan, E. M. Muralidharan, T. K. Hrideek, A. V. Raghu, M. Amruth, & V. V. Radhakrishnan (Eds.), Prospectus in forestry and agriculture (pp. 32–34). peechi-Kerala: KFRI.

    Google Scholar 

  • Molinari, H. B. C., Marur, C. J., Daros, E., De Campos, M. K. F., De Carvalho, J. F. R. P., Filho, J. C. B., et al. (2007). Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum, 130, 218–229.

    Article  CAS  Google Scholar 

  • Montgomery, R. (1957). Determination of glycogen. Archives of Biochemistry and Biophysics, 67, 373–386.

    Article  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology, 6, 763–775.

    Article  CAS  Google Scholar 

  • Pereira, W. E., de Siqueira, D. L., Martınez, C. A., & Puiatti, M. (2000). Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. Journal of Plant Physiology, 157, 513–520.

    Article  CAS  Google Scholar 

  • Phillips, J. M., & Hayman, D. S. (1970). Improved proceduring for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 54, 53–63.

    Article  Google Scholar 

  • Pinior, A., Grunewaldt-Stöcker, G., von Alten, H., & Strasser, R. J. (2005). Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza, 15, 596–605.

    Article  CAS  Google Scholar 

  • Porcel, R., & Ruiz-Lozano, J. M. (2004). Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany, 55, 1743–1750.

    Article  CAS  Google Scholar 

  • Puteh, A. B., Saragih, A. A., Ismail, M. R., & Mondal, M. M. A. (2013). Chlorophyll fluorescence parameters of cultivated (Oryza sativa L. ssp. indica) and weedy rice (Oryza sativa L. var. nivara) genotypes under water stress. Australian Journal of Crop Science, 7, 1277–1283.

    Google Scholar 

  • Puthur, J. T. (2000). Photosynthetic events in Sesbania sesban (L.) Merrill in relation to osmotic stress during different developmental stages. Ph.D Thesis, Jamia Millia Islamia, New Delhi.

  • Raj, S., & Sharma, S. D. (2009). Integration of soil solarization and chemical sterilization with beneficial microorganisms for the control of white root rot and growth of nursery apple. Scientia Horticulturae, 119, 126–131.

    Article  CAS  Google Scholar 

  • Rillig, M. C. (2004). Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 84, 355–363.

    Article  Google Scholar 

  • Robert, M. J., Long, S. P., Tieszen, L. L., & Beadle, C. L. (1987). Measurement of plant biomass and net primary production. In J. Coombs, D. O. Hall, S. P. Long, & J. M. O. Scurlock (Eds.), Techniques in bioproductivity and photosynthesis (pp. 1–9). Oxford: Pergamon Press.

    Google Scholar 

  • Sainz, M., Diaz, P., Monza, J., & Borsani, O. (2010). Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to photosystem II in combined drought-heat stressed Lotus japonicus. Physiologia Plantarum, 140, 46–56.

    Article  CAS  Google Scholar 

  • Salzer, P., Corbière, H., & Boller, T. (1999). Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta, 208, 319–325.

    Article  CAS  Google Scholar 

  • Schenck, N. C., & Perez, Y. (1990). Manual for the identification of VA mycorrhizal fungi (Vol. 286). Gainesville: Synergistic Publications.

    Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 46, 209–221.

  • Sutton, J. C. (1973). Development of vesicular-arbuscular mycorrhizae in crop plants. Canadian Journal of Botany, 51, 2487–2493.

    Article  Google Scholar 

  • Tauler, M., & Baraza, E. (2015). Improving the acclimatization and establishment of Arundo donax L. plantlets, a promising energy crop, using a mycorrhiza-based biofertilizer. Industrial Crops and Products, 66, 299–304.

    Article  Google Scholar 

  • Toth, R., & Miller, M. (1984). Dynamics of arbuscule development and degeneration in a Zea mays mycorrhiza. American Journal of Botany, 17, 449–460.

    Article  Google Scholar 

  • Tye, Y. Y., Lee, K. T., Abdullah, W. N. W., & Leh, C. P. (2012). Potential of Ceiba pentandra (L.) Gaertn. (kapok fiber) as a resource for second generation bioethanol: effect of various simple pretreatment methods on sugar production. Bioresource Technology, 116, 536–539.

    Article  CAS  Google Scholar 

  • Vijayakumari, K., & Puthur, J. T. (2015). γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regulation. doi:10.1007/s10725-015-0074-6.

    Google Scholar 

  • Weatherley, P. (1950). Studies in the water relations of the cotton plant. New Phytologist, 49, 81–97.

    Article  Google Scholar 

  • Wongwatanapaiboon, J., Kangvansaichol, K., Burapatana, V., Inochanon, R., Winayanuwattikun, P., Yongvanich, T., et al. (2012). The potential of cellulosic ethanol production from grasses in Thailand. Journal of Biomedicine and Biotechnology. doi:10.1155/2012/303748.

    Google Scholar 

  • Wu, Q. S., Zou, Y. N., & Xia, R. X. (2006). Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. European Journal of Soil Biology, 42, 166–172.

    Article  CAS  Google Scholar 

  • Wu, Q. S., Xia, R. X., Zou, Y. N., & Wang, G. Y. (2007). Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress. Acta Physiologiae Plantarum, 29, 543–549.

    Article  CAS  Google Scholar 

  • Wu, Q. S., Srivastava, A. K., & Zou, Y. N. (2013). AMF-induced tolerance to drought stress in citrus: a review. Scientia Horticulturae, 164, 77–87.

    Article  CAS  Google Scholar 

  • Yin, D., Chen, S., Chen, F., Guan, Z., & Fang, W. (2009). Morphological and physiological responses of two Chrysanthemum cultivars differing in their tolerance to waterlogging. Environmental and Experimental Botany, 67, 87–93.

    Article  CAS  Google Scholar 

  • Yin, B. Z., Wang, Y. N., Liu, P., Hu, J. L., & Zhen, W. C. (2010). Effects of vesicular-arbuscular mycorrhiza on the protective system in strawberry leaves under drought stress. Frontiers of Agriculture in China, 4, 165–169.

    Article  Google Scholar 

  • Yooyongwech, S., Phaukinsang, N., Cha-um, S., & Supaibulwatana, K. (2013). Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation, 69, 285–293.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhong, C. L., Chen, Y., Chen, C., Jiang, Q. B., Pinyopusarerk, C., et al. (2010). Improving drought tolerance of Casuarina equisetifolia seedlings by arbuscular mycorrhizas under glasshouse conditions. New Forests, 40, 261–271.

    Article  Google Scholar 

  • Zou, Y. N., Huang, Y. M., Wu, Q. S., & He, X. H. (2015). Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza, 25, 143–152.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JTP acknowledges the funding received from University Grants Commission (India) (39-367/2010(SR)). The authors express their gratitude to Prof. Nabeesa Salim for the thorough revision of the manuscript. The authors acknowledge the expertise of Dr. Murali Gopal, Principal Scientist, Microbiology (Plant science) CPCRI, Kasaragode, for the identification of AMF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos T. Puthur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirshad, P.P., Puthur, J.T. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.). Environ Monit Assess 188, 425 (2016). https://doi.org/10.1007/s10661-016-5428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5428-7

Keywords

Navigation