Skip to main content

Advertisement

Log in

Analysis of the dust emissions from a naturally ventilated turkey house using tracer gas method

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Particulate matter (PM) emissions are becoming increasingly important in licensing procedures for the construction of new livestock houses or for the modernization of existing ones. Emission predictions require reliable data about emission rates. On this account, it is necessary to obtain information about the emission development and the relevant influencing factors in naturally ventilated turkey houses. The primary objective of the present research was to describe different aspects of PM emissions from a naturally ventilated turkey house. This includes the quantification of PM emissions and descriptions of the relevant influencing factors. Moreover, the tracer gas decay (TGD) method for ventilation rate estimation had to be used. To determine the emission mass flow from livestock buildings, it was necessary to measure the concentration of the target substance in the exhaust air and the airflow volume. The PM concentration measurements were carried out with a light scattering aerosol spectrometer in the exhaust air. The airflow volume was determined using the TGD method. To this purpose, tracer gas was injected into the supply air before the concentration decay was measured in the exhaust air of the building. The main influences on the PM concentration and the PM size distribution were shown to be animal activity and air volume flow. For the turkey barn, the PM emission factor averaged 0.027 g h−1 animal−1 over the entire year. If service times were to be included in the calculation, the emission factor 0.021 g h−1 animal−1, again averaged over the entire year, is well below the regulatory limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\( {\overset{.}{m}}_{\mathrm{s}} \) :

PM mass flow (g h−1)

v · :

Air volume flow (m3 h−1)

Φw :

Wind direction (°)

V w :

Wind speed (m s−1)

A f :

Exhaust air area of the room (m2)

A s :

Supply air area (m2)

T a :

Outside air temperature (°C)

C e :

Particle concentration in exhaust air (g m−3)

C o :

Particle concentration in outside air (g m−3)

\( {C}_{t_i} \) :

Mass concentration at the time t i (g m−3)

\( {C}_{t_0} \) :

Mass concentration at the time t 0 (g m−3)

V :

Animal house volume (m3)

t :

Time (s)

C d :

Coefficient of flow resistance

C w :

Coefficient of the wind flow

PM:

Particulate matter

PM2.5 :

Particulate matter with a diameter <2.5 μm

PM10 :

Particulate matter with a diameter <10 μm

PE:

Polyethylene tube

TGD:

Tracer gas decay

NaSt3D:

Navier-Stokes in three dimensional (propagation model)

References

  • Alencar, M., Nääs, I., & Gontijo, L. A. (2004). Respiratory risks in broiler production workers. Brazilian Journal of Poultry Science., 6(1), 23–29.

    Google Scholar 

  • Banhazi, T., and Seedorf, J., (2007): Airborne particles within Australian and German piggeries—what are the differences? International conference: how to improve air quality, Maastricht, The Netherlands

  • Baptista, F. J., Bailey, B. J., Randall, J. M., & Meneses, J. F. (1999). Greenhouse ventilation rate: theory and measurement with tracer gas techniques. J. Agric. Engng. Res, 72, S, 363–374.

    Article  Google Scholar 

  • Bottcher, R. W., Willits, D. H., & Baughman, G. R. (1986). Experimental analysis of wind ventilation of poultry buildings. Transactions of the ASAE, 29(2), S. 571–578.

    Article  Google Scholar 

  • Bruce, J. M. (1982). Ventilation of a model livestock building by thermal buoyancy. Transactions of the ASAE, 25(6), S. 1724–1726.

    Article  Google Scholar 

  • Calvet, S., Van den Weghe, H., Kosch, R., & Estellés, F. (2009). The influence of the lighting program on broiler activity and dust production. Poultry Science, 88, 2504–2511.

    Article  CAS  Google Scholar 

  • Cambra-Lòpez, M., Aarnink, A. J. A., Zhao, Y., Calvet, S., & Torres, A. G. (2010). Airborne particulate matter from livestock production systems: a review of an air pollution problem. Environmental Pollution, 158, 1–17.

    Article  Google Scholar 

  • Cooper, K., Parsons, D. J., & Demmers, T. (1998). A thermal balance model for livestock buildings for use in climate change studies. J. Agric. Engng. Res., 69, S. 43–52.

    Article  Google Scholar 

  • DFG (Deutsche Forschungsgemeinschaft). (2006). Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe. Mitteilung 42, MAK- BAT-Werte-Liste. Weinheim: Wiley-VCH Verlagsgesellschaft mbH.

    Google Scholar 

  • Ellen, H. H., Bottcher, R. W., von Wachenfelt, E., & Takai, H. (2000). Dust levels and control methods in poultry houses. Journal of Agricultural Safety and Health, 6(4).

  • Estellés, F., Calvet, S., Blumetto, O., Rodríguez-Latorre, A. R., & Torres, A. G. (2009). Technical note: a flux chamber for measuring gas emission from rabbits. World Rabbit Sci, 17, 169–179.

    Google Scholar 

  • FAO, (2013): FAOSTAT database. Food and Agriculture Organization, Rome (Accessible: http://faostat.fao.org/site/573/DesktopDefault.aspx?PageID=573#ancor).

  • Hinz, T. and Linke, S. (2004): Arbeitsplatzkonzentrationen in einem Putenstall mit Wintergarten. 14. Arbeitswissenschaftliches Seminar, VDI-MEG-Arbeitskreis, Arbeitswissenschaften im Landbau, Tänikon, Switzerland

  • Hinz, T., Berk, J., Hartung, J., and Linke, S. (1999): Environment enrichments and dust emissions in turkey production. In Proc. International Symposium on “Dust Control in Animal Production Facilities”, Scandinavian Congress Center, Aarhus, Denmark, 237-243

  • Hinz, T., Linke, S., Bittner, P., Karlowski, J. and Kolodziejczyk, T. (2007): Measuring particle emissions in and from a polish cattle house. International interdisciplinary conference. Particulate matter in and from agriculture, Braunschweig, Germany

  • ISO 7708. (1995). Luftbeschaffenheit - Festlegung von Partikelgrößenverteilungen für die gesundheitsbezogene Schwebstaubprobenahme, Beuth-Verlag.

    Google Scholar 

  • Jay, H., Zhang, R., Xin, H., (1994): Human health concerns livestock and poultry housing. National Poultry Waste Management Symposium, Athens, Georgia, October 31. AEN-159

  • Katsoulas, N., Bartzanas, T., Boulard, T., Mermier, M., & Kittas, C. (2006). Effect of vent openings and insect screens on greenhouse ventilation. Biosystems Engineering, 93(4), 427–436.

    Article  Google Scholar 

  • Kittas, C., Boulard, T., Mermier, M., & Papadakis, G. (1996). Wind induced air exchange rates in a greenhouse tunnel with continuous side openings. J. Agric. Engng. Res., 65, 37–49.

    Article  Google Scholar 

  • Kocaman, B., Esenbuga, N., Yildiz, A., Lac, E., & Macit, M. (2006). Effect of environmental conditions in poultry houses on the performance of laying hens. International Journal of Poultry Science, 5(1), 26–30.

    Article  Google Scholar 

  • Mostafa, E., & Buescher, W. (2011). Indoor air quality improvement from particle matters for laying hen poultry houses. Biosystems Engineering, 109, 22–36.

    Article  Google Scholar 

  • Mueller, H.J. (2001): Bilanzmethoden zur Luftvolumenstromermittlung in frei gelüfteten Ställen. In: Messmethoden für Ammoniak-Emissionen, KTBL- Schrift 401; Darmstadt

  • Niebaum, A. (2001): Quantifizierung gasförmiger Emissionen aus quer gelüfteten Außenklimaställen für Mastschweine mit Hilfe der Tracergas-Technik. Dissertation Universität Göttingen, VDI-MEG-Schriftenreihe 370

  • Papadakis, G., Mermier, M., Meneses, J. F., & Boulard, T. (1996). Measurement and analysis of air exchange rates in a greenhouse with continuous roof and side openings. J. Agric. Engng. Res, 63, S. 219–228.

    Article  Google Scholar 

  • Pearson, C. C., & Owen, J. E. (1994). The resistance to air flow of farm building ventilation components. Journal of Agricultural Engineering Research, 57, 53–65.

    Article  Google Scholar 

  • Pearson, C.,C., (1993): An improved calculation method for design of natural ventilation by thermal buoyancy. 4th International Symposium, University of Warwick, Coventry, England, S. 795-802

  • Pedersen, S., Nonnenmann, M., Rautiainen, R., Demmers, T. G. M., Banhazi, T., & Lyngbye, M. (2000). Dust in pig buildings. Journal of Agricultural Safety and Health, 6(4), 261–274.

    Article  CAS  Google Scholar 

  • Radon, K., Weber, C., Iversen, M., Danuser, B., Pedersen, S., & Nowak, D. (2001). Exposure assessment and lung function in pig and poultry farmers. Occup Environ Med., 58, 405–410.

    Article  CAS  Google Scholar 

  • Schmitt-Pauksztat, G., Wallenfang, O., Büscher, W., & Diekmann, B. (2004). Partikel-konzentrationen in der Stallabluft im Vergleich mit der Innenraumkonzentration. Agrartechnische Forschung, 10(6), 105–110.

    Google Scholar 

  • Schneider, F., Eichelser, R., Neser, S., Haidn, B., Gronauer, A., Schierl, R., & Egger, U. (2005). Es liegt was in der Luft. DGS Magazin, 26, 14–17.

    Google Scholar 

  • Seedorf, J., & Hartung, J. (2000). Emission of airborne particulates from animal production. Workshop 4 on sustainable animal production. Hannover, Germany

  • Seipelt, F. (1999): Quantifizierung und Bewertung gasförmiger Emissionen aus frei gelüfteten Milchviehställen mit Trauf-First-Lüftung. Dissertation Universität Göttingen, VDI-MEG-Schriftenreihe 336

  • Takai, H., Pedersen, S., Johnson, J. O., Metz, J. H. M., Grootkoerkamp, P. W. G., Uenk, G. H., Phillips, V. R., Holden, M. R., Sneath, R. W., Short, J. L., White, R. P., Hartung, J., Seedorf, J., Schröder, M., Linkert, K. H., & Wathes, C. M. (1998). Concentrations and emissions of airborne dust in livestock buildings in northern Europe. J. Agric. Engng Res., 70, S. 59–77.

    Article  Google Scholar 

  • Timmons, M. B., & Baughman, G. R. (1981). Similitude analysis of ventilation by stack effect from an open ridge livestock structure. Transactions of the ASAE, 24(4), S. 1030–1034.

    Article  Google Scholar 

  • Van’t Klooster, C. E., & Heitlager, B. P. (1994). Determination of minimum ventilation rate in pig houses with natural ventilation based on carbon dioxide balance. J. Agric. Engng. Res., 57, S. 279–287.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to show their appreciation for the financing organizations, Zentralverband der deutschen Geflügelwirtschaft (ZDG) and Big Dutchman International Company GmbH. We also thank the animal housing owners for giving us the opportunity for achieving this study in their farm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehab Mostafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafa, E., Diekmann, B., Buescher, W. et al. Analysis of the dust emissions from a naturally ventilated turkey house using tracer gas method. Environ Monit Assess 188, 377 (2016). https://doi.org/10.1007/s10661-016-5355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5355-7

Keywords

Navigation