Skip to main content
Log in

Leaching potential of silver from nanosilver-treated textile products

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The use of nanosilver as an antibacterial agent for various products has increased, especially so, in textiles. This study aims to investigate the potential of Ag to leach from commercial products which contain nano-Ag by using the toxicity characteristic leaching procedure (TCLP) test in accordance with USEPA method 1311. Eight nano-Ag products were purchased from the market. Only those products that are likely to be disposed of in a landfill after end use were selected. Nano-Ag fabrics of different concentrations were also prepared at the laboratory scale, and the TCLP test was performed on them as well. The current study assumes that the new products were discarded without use. The Ag content was quantified by inductively coupled plasma–mass spectroscopy (ICP-MS) and ranged from 0.95 to 2.82 μg/g of the product in the commercial products and from 1.49 to 350 μg/g of the product in the lab-prepared fabrics. In the TCLP test results, Ag concentrations ranged from 4.3 to 64.9 μg/L in the commercial products and from 28.9 to 28,381 μg/L in the lab-prepared fabrics. The results also indicate that the amount of Ag released depends on the type of the fabrics. Additionally, the size of the nano-Ag released in percentage is different for each prepared fabric. This study can help in understanding the amount of Ag released during the disposal phase of a product in a landfill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arvidsson, R., Molander, S., & Sanden, B. A. (2011). Impacts of a silver-coated future: particle flow analysis of silver nanoparticles. Journal of Industrial Ecology, 15(6), 844–854.

    Article  CAS  Google Scholar 

  • Aschberger, K., Micheletti, C., Sokull-Kluttgen, B., & Christensen, F. M. (2011). Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health - lessons learned from four case studies. Environment International, 37(6), 1143–1156.

    Article  CAS  Google Scholar 

  • Batchelor-McAuley, C., Tschulik, K., Neumann, C. C. M., Laborda, E., & Compton, R. G. (2014). Why are silver nanoparticles more toxic than bulk silver? Towards understanding the dissolution and toxicity of silver nanoparticles. International Journal of Electrochemical Science, 9(3), 1132–1138.

    Google Scholar 

  • Benn, T. M., & Westerhoff, P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science and Technology, 42(11), 4133–4139.

    Article  CAS  Google Scholar 

  • Benn, T. M., Cavanagh, B., Hristovski, K., Posner, J. D., & Westerhoff, P. (2010). The release of nanosilver from consumer products used in the home. Journal of Environmental Quality, 39(6), 1875–1882.

    Article  CAS  Google Scholar 

  • Boldrin, A., Hansen, S. F., Baun, A., Hartmann, N. I. B., & Astrup, T. F. (2014). Environmental exposure assessment framework for nanoparticles in solid waste. Journal of Nanoparticle Research, 16(6), 2394.

    Article  Google Scholar 

  • Choi, O., & Hu, Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science and Technology, 42(12), 4583–4588.

    Article  CAS  Google Scholar 

  • DEPA (The Danish Environmental Protection Agency). (2012). Assessment of nanosilver in textiles on The Danish market. Environmental Project No.1432.

  • El-Rafie, M. H., Mohamed, A. A., Shaheen, T. H. I., & Hebeish, A. (2010). Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydrate Polymers, 80, 779–782.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (EPA). (1992). Standard method 1311 Toxicity Characteristic Leaching Procedure. SW-846 test methods for evaluating solid wastes, http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/1311.pdf. Accessed 20 June 2014.

  • Environmental Protection Agency (EPA). (1999). Identification and listing of hazardous wastes, Toxicity characteristics. Code of Federal Regulations, 40 CFR 261.24, Vol.18, No.261, 55–56.

  • Geranio, L., Heuberger, M., & Nowack, B. (2009). The behavior of silver nanotextiles during washing. Environmental Science and Technology, 43(21), 8113–8118.

    Article  CAS  Google Scholar 

  • KEMI. (2012). Antibacterial substances leaking out with the washing water—analyses of silver triclosan, and triclocarbon in textiles before and after washing. Sundbyberg: Swedish Chemicals Agency.

    Google Scholar 

  • Kennedy, A. J., Hull, M. S., Bednar, A. J., Goss, J. D., Gunter, J. C., Bouldin, J. L., Vikesland, P. J., & Steevens, J. A. (2010). Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Environmental Science and Technology, 44(24), 9571–9577.

    Article  CAS  Google Scholar 

  • Kim, B., Park, C. S., Murayama, M., & Hochella, M. F. (2010). Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environmental Science and Technology, 44(19), 7509–7514.

    Article  CAS  Google Scholar 

  • Kulthong, K., Srisung, S., Boonpavanitchakul, K., Kangwansupamonkon, W., & Maniratnachote, R. (2010). Determination of silver nanoparticles release from antibacterial fabrics into artificial sweat. Particle and Fibre Toxicology, 1(7), 8.

    Article  Google Scholar 

  • Liang, Z., Das, A., & Hu, Z. (2010). Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Research, 44(18), 5432–5438.

    Article  CAS  Google Scholar 

  • Liu, J., & Hurt, R. H. (2010). Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environmental Science and Technology, 44(6), 2169–2175.

    Article  CAS  Google Scholar 

  • Lorenz, C., Windler, L., Goetz, N. V., Lehmann, R. P., Schuppler, M., Hungerbuhler, K., & Nowack, B. (2012). Characterization of silver release from commercial available functional (nano) textiles. Chemosphere, 89(7), 817–824.

    Article  CAS  Google Scholar 

  • McShan, D., Ray, P. C., & Yu, H. (2014). Molecular toxicity mechanism of nanosilver. Journal of Food and Drug Analysis, 22(1), 116–127.

    Article  CAS  Google Scholar 

  • Musee, N. (2010). Nanotechnology risk assessment from a waste management perspective: are the current tools adequate? Human and Experimental Toxicology, 30(8), 820–835.

    Article  Google Scholar 

  • Musson, S. E., Jang, Y. C., Townsend, T. G., & Chung, I. H. (2000). Characterization of lead leachability from cathode ray tubes using the toxicity characteristic leaching procedure. Environmental Science and Technology, 34(20), 4376–4381.

    Article  CAS  Google Scholar 

  • Parthasarathi, V., & Thilagavathi, G. (2009). Synthesis and characterization of titanium dioxide nano-particles and their application to textiles for microbe resistance. Journal of Textile and Apparel, Technology and Management, 6(2), 1–8.

    Google Scholar 

  • Pasricha, A., Jangra, S. L., Singh, N., Dilbaghi, N., Sood, K. N., Arora, K., & Pasricha, R. (2012). Comparative study of leaching of silver nanoparticles from fabric and effective effluent treatment. Journal of Environment Sciences, 24(5), 852–859.

    Article  CAS  Google Scholar 

  • Patel, M. H., & Desai, P. B. (2015). Antimicrobial effect of herbal nanosilver finished fabrics on drug resistant pathogens. International Journal of Science and Research, 4(1), 427–432.

    Google Scholar 

  • Peretyazhko, T. S., Zhang, Q., & Colvin, V. L. (2014). Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environmental Science and Technology, 48(20), 11954–11961.

    Article  CAS  Google Scholar 

  • Project on Emerging Nanotechnologies. (2016). Online inventory of nanotechnology-based consumer products introduced on the market. http://www.nanotechproject.org/cpi. Accessed 20 Jan 2016.

  • Scheringer, M., MacLeod, M., Behra, T., Sigg, L., & Hungerbühler, K. (2010). Environmental risks associated with nanoparticulate silver used as biocide. Household and Personel Care Today, 6(2), 27–29.

    Google Scholar 

  • Schluesener, J. K., & Schluesener, H. J. (2013). Nanosilver: application and novel aspects of toxicology. Archives of Toxicology, 87(4), 569–576.

    Article  CAS  Google Scholar 

  • Sporl, R., Wagenknecht, A., Simstich, B., Rumpel, J.W., Pauly, D., Hiermeier, P., Eichhorn, R.V. (2011). Report on impact of nanoscale silver. http://www.aquafit4use.eu/userdata/file/Public%20results/AquaFit4Use%20-20Impact%20of%20nanoscale%20silver.pdf. Accessed 20 June 2014.

  • Sun, T. Y., Gottschalk, F., Hungerbühler, K., & Nowack, B. (2014). Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environmental Pollution, 185, 69–76.

    Article  CAS  Google Scholar 

  • Thanh, N. V. K., & Phong, N. T. P. (2009). Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid. Journal of Physics: Conference Series, 187(1), 012072.

    Google Scholar 

  • Throback, I. N., Johansson, M., Rosenquist, M., Pell, M., Hansson, M., & Hallin, S. (2007). Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiology Letters, 270(2), 189–194.

    Article  Google Scholar 

  • Ureyen, M. E., Gok, O., Ates, M., Gunkaya, G., & Suzer, S. (2010). Evaluation of silver content and antibacterial activities of silver loaded fiber/cotton blended textile fabrics. Journal of Textile and Apparel, 20(2), 137–144.

    Google Scholar 

  • Whiteley, C. M., Valle, M. D., Jones, K. C., & Sweetman, A. J. (2011). Challenges in assessing the environmental fate and exposure of nano silver. Journal of Physics: Conference Series, 304, 012070.

    Google Scholar 

  • Wijnhoven, S. W. P., Peijnenburg, W. J. G. M., Herberts, C. A., Hagens, W. I., Oomen, A. G., Heugens, E. H. W., Roszek, B., Bisschops, J., Gosens, I., Meent, D. V. D., Dekkers, S., Jong, W. H. D., Zijverden, M. V., Sips, A. J. A. M., & Geertsma, R. E. (2009). Nano-silver - a review of available data and knowledge gaps in Human and environmental risk assessment. Nanotoxicology, 3(2), 109–138.

    Article  CAS  Google Scholar 

  • Windler, L., Height, M., & Nowack, B. (2013). Comparative evaluation of antimicrobials for textile applications. Environment International, 53, 62–73.

    Article  CAS  Google Scholar 

  • Yang, Y., Xu, M., Wall, J. D., & Hu, Z. Q. (2012). Nanosilver impact on methanogenesis and biogas production frommunicipal solid waste. Waste Management, 32(5), 816–825.

    Article  CAS  Google Scholar 

  • Yang, Y., Gajaraj, S., Wall, J. D., & Hu, Z. (2013). A comparison of nanosilver and silver ion effects on bioreactor landfill operations and methanogenic population dynamic. Water Research, 47(10), 3422–3440.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by The Royal Golden Jubilee PhD Program (RGJ) under the organization of the Thailand Research Fund (TRF), Grant No. PHD/0307/2552. We thank the RGJ for providing funds for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Babel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limpiteeprakan, P., Babel, S. Leaching potential of silver from nanosilver-treated textile products. Environ Monit Assess 188, 156 (2016). https://doi.org/10.1007/s10661-016-5158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5158-x

Keywords

Navigation