Skip to main content

Advertisement

Log in

Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This research aimed at developing the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems based on a review of the indicative values of diatom species obtained using multivariate analysis techniques and considering the environmental gradient defined by a series of measured physical, chemical, and microbiological variables. Sampling was conducted from 2005 to 2009 in the Pardo River Hydrographic Basin, Rio Grande do Sul (RS), Brazil, and in the Andreas Stream Hydrographic Basin, RS, from 2012 to 2013. A total of 140 biological samples and 211 abiotic samples were collected. Data were analyzed by cluster analysis based on the Ward method and canonical correspondence analysis (CCA). The results indicated that total phosphate, turbidity, ammonia nitrogen, electrical conductivity, dissolved oxygen, and thermotolerant coliforms showed a significant correlation with the sample ordination made by CCA, in relation to a gradient of eutrophication. Eutrophication was operationally defined in a broad sense, including the problem of organic pollution and eutrophication of the water. The determination of the different tolerance degrees to eutrophication of the diatom taxa was used to assign trophic values of 1, 2.5, and 4 to species, corresponding to levels of low, medium, and high tolerance, respectively. By using the trophic values obtained for each diatom species, the TWQI constituted a new technological tool for environmental monitoring studies and showed a consistent, robust, and objective database for water quality assessment in subtropical temperate Brazilian lotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Figs. 4–46

Similar content being viewed by others

References

  • Albert, R. L., Korhola, A., & Sorvari, S. (2009). Analysis of factors controlling epilithic diatom community compositions in subarctic lakes of Finnish Lapland. Advances in Limnology, 62, 125–151.

    CAS  Google Scholar 

  • Álvarez-Blanco, I., Blanco, S., Cejudo-Figueiras, C., & Bécares, E. (2013). The Duero Diatom Index (DDI) for river water quality assessment in NW Spain: design and validation. Environmental Monitoring and Assessment, 185, 969–981. doi:10.1007/s10661-012-2607-z.

    Article  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater. Washington: American Public Health Association.

    Google Scholar 

  • Bellinger, B. J., Cocquyt, C., & O’Reilly, C. M. (2006). Benthic diatoms as indicators of eutrophication in tropical streams. Hydrobiologia, 573, 75–87. doi:10.1007/s10750-006-0262-5.

    Article  CAS  Google Scholar 

  • Bere, T., & Tundisi, J. G. (2009). Weighted average regression and calibration of conductivity and pH of benthic diatoms in streams influenced by urban pollution—São Carlos/SP, Brazil. Acta Limnologica Brasiliensia, 21(3), 317–325.

    Google Scholar 

  • Bes, D., Ector, L., Torgan, L. C., & Lobo, E. A. (2012). Composition of the epilithic diatom flora from a subtropical river, Southern Brazil. Iheringia Série Botânica, 67(1), 93–125.

    Google Scholar 

  • Böhm, J. S., Schuch, M., Düpont, A., & Lobo, E. A. (2013). Response of epilithic diatom communities to downstream nutrient increases in Castelhano Stream, Venâncio Aires City, RS, Brazil. Journal of Environmental Protection, 4, 20–26. doi:10.4236/jep.2013.411A1003.

    Article  Google Scholar 

  • Branco, S. M. (2005). Água: Origem, uso e preservação. São Paulo: Editora Moderna.

    Google Scholar 

  • Bruno, E., Martínez de Fabricius, A. L., & Luque, M. E. (2003). Fitoplancton en un tramo del Río Cuarto con influencia antrópica. Boletín de la Sociedad Argentina de Botánica, 38, 1–13.

    Google Scholar 

  • Cantonati, M., Angeli, N., Virtanen, L., Wojtal, A. Z., Gabrieli, J., Falasco, E., Lavoie, I., Morin, S., Marchetto, A., Fortin, C., & Smirnova, S. (2014). Achnanthidium minutissimum (Bacillariophyta) valve deformities as indicators of metal enrichment in diverse widely-distributed freshwater habitats. Science of the Total Environment, 475, 201–215. doi:10.1016/j.scitotenv.2013.10.018.

    Article  CAS  Google Scholar 

  • Carvalho, L., Miller, C., Spears, B. M., Gunn, I. D. M., Bennion, H., Kirika, A., & May, L. (2012). Water quality of Loch Leven: responses to enrichment, restoration and climate change. Hydrobiologia, 681, 35–47. doi:10.1007/s10750-011-0923-x.

    Article  CAS  Google Scholar 

  • Chapman, D. (1992). Water Quality Assessments: a guide to the use of biota, sediments and water in environmental monitoring. UNESCO, UNEP, WHO. Londres: Chapmann & Hall.

    Book  Google Scholar 

  • Charles, D. F., Acker, F. W., Hart, D. D., Reimer, C. W., & Cotter, P. B. (2006). Large-scale regional variation in diatom–water chemistry relationships: rivers of the eastern United States. Hydrobiologia, 561, 27–57. doi:10.1007/s10750-005-1603-5.

    Article  CAS  Google Scholar 

  • Dell’Uomo, A. (2004). L’indice diatomico di eutrofizzazione/polluzione (EPI-D) nel monitoraggio delle acque correnti. Linee guida. Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici (APAT) Centro Tematico Nazionale, Acque Interne e Marino Costiere, Roma, Firenze.

  • Dupas, R., Delmas, M., Dorioz, J. M., Garnier, J., Moatar, F., & Gascuel-Odoux, C. (2015). Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecological Indicators, 48, 396–407. doi:10.1016/j.ecolind.2014.08.007.

    Article  CAS  Google Scholar 

  • Ector, L., & Rimet, F. (2005). Using bioindicators to assess rivers in Europe: an overview. In S. Lek, M. Scardi, P. F. M. Verdonschot, J. P. Descy, & Y. S. Park (Eds.), Modelling community structure in freshwater ecosystems (pp. 7–19). Berlin Heidelberg: Springer Verlag.

    Google Scholar 

  • Esteves, F. A. (2011). Fundamentos de Limnologia. Rio de Janeiro: Interciência LTDA.

    Google Scholar 

  • EUROPEAN UNION. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Community, Series L, 327, 1–73.

    Google Scholar 

  • Faria, D. M., Guimarães, A. T. B., & Ludwig, T. A. V. (2013). Responses of periphytic diatoms to mechanical removal of Pistia stratiotes L. in a hypereutrophic subtropical reservoir: dynamics and tolerance. Brazilian Journal of Biology, 73(4), 681–689. doi:10.1590/S1519-69842013000400002.

    Article  Google Scholar 

  • Gottschalk, S., & Kahlert, M. (2012). Shifts in taxonomical and guild composition of littoral diatom assemblages along environmental gradients. Hydrobiologia, 694, 41–56. doi:10.1007/s10750-012-1128-7.

    Article  CAS  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.

    Google Scholar 

  • Hermany, G., Schwarzbold, A., Lobo, E. A., & Oliveira, M. A. (2006). Ecology of the epilithic diatom community in a low-order stream system of the Guaíba hydrographical region: subsidies to the environmental monitoring of southern Brazilian aquatic systems. Acta Limnologica Brasiliensia, 18(1), 9–27.

    Google Scholar 

  • Hofmann, G. (1994). Aufwuchs-Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Bibliotheca Diatomologica, 30, 1–241.

    Google Scholar 

  • IBGE. (2010). Censo populacional IBGE. Instituto Brasileiro de Geografia e Estatística. http://censo2010.ibge.gov.br. Accessed 20 Dec 2013.

  • Kelly, M. G., & Whitton, B. A. (1995). The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology, 7, 433–444.

    Article  Google Scholar 

  • Kernan, M., Ventura, M., Bitušík, P., Brancelj, A., Clarke, G., Velle, G., et al. (2009). Regionalisation of remote European mountain lake ecosystems according to their biota: environmental versus geographical patterns. Freshwater Biology, 54(12), 2470–2493. doi:10.1111/j.1365-2427.2009.02284.x.

    Article  CAS  Google Scholar 

  • King, L., Barker, P., & Jones, R. I. (2000). Epilithic algal communities and their relationship to environmental variables in lakes of the English Lake District. Freshwater Biology, 45, 425–442.

    Article  Google Scholar 

  • Kobayasi, H., & Mayama, S. (1982). Most pollution-tolerant diatoms of severely polluted rivers in the vicinity of Tokyo. Japanese Journal of Phycology, 30, 188–196.

    Google Scholar 

  • Kobayasi, H., & Mayama, S. (1989). Evaluation of river water quality by diatoms. The Korean Journal of Phycology, 4, 121–133.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1986). Bacillariophyceae. 1. Teil: Naviculaceae. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süβwasserflora von Mitteleuropa 2/1. Stuttgart - New York: Gustav Fisher Verlag.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1988). Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süβwasserflora von Mitteleuropa 2/2. Stuttgart - New York: Gustav Fischer Verlag.

    Google Scholar 

  • Lange-Bertalot, H. (1979). Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia. Beiheft, 64, 285–304.

    Google Scholar 

  • Lobo, E. A. (2013). O perifíton como indicador da qualidade da água. In A. Schwarzbold, A. L. Burliga, & L. C. Torgan (Eds.), Ecologia do Perifíton (pp. 205–233). São Carlos: RiMa Editora.

    Google Scholar 

  • Lobo, E. A., & Leighton, G. (1986). Estructuras comunitarias de las fitocenosis planctónicas de los sistemas de desembocaduras de ríos y esteros de la Zona Central de Chile. Revista Biología Marina, 22, 1–29.

    Google Scholar 

  • Lobo, E. A., & Callegaro, V. L. M. (2000). Avaliação da qualidade de águas doces continentais com base em algas diatomáceas epilíticas: Enfoque metodológico. In C. E. M. Tucci & D. M. Marques (Eds.), Avaliação e Controle da Drenagem Urbana (pp. 277–300). Porto Alegre: Ed. Universidade, UFRGS.

    Google Scholar 

  • Lobo, E. A., Callegaro, V. L. M., & Bender, E. P. (2002). Utilização de Algas Diatomáceas Epilíticas como Indicadores da Qualidade da Água em Rios e Arroios da Região Hidrográfica do Guaíba, RS, Brasil. EDUNISC: Santa Cruz do Sul.

    Google Scholar 

  • Lobo, E. A., Wetzel, C. E., & Bes, D. (2003). Avaliação da qualidade da água dos arroios Sampaio, Bonito e Grande, Município de Mato Leitão, RS, Brasil. Tecno-Lógica, 7(2), 39–53.

    Google Scholar 

  • Lobo, E. A., Callegaro, V. L. M., Hermany, G., Bes, D., Wetzel, C. E., & Oliveira, M. A. (2004a). Use of epilithic diatoms as bioindicators from lotic systems in southern Brazil, with special emphasis on eutrophication. Acta Limnologica Brasiliensia, 16(1), 25–40.

    Google Scholar 

  • Lobo, E. A., Bes, D., Tudesque, L., & Ector, L. (2004b). Water quality assessment of the Pardinho River, RS, Brazil, using epilithic diatom assemblages and faecal coliforms as biological indicators. Vie & Milieu, 54(2/3), 115–126.

    Google Scholar 

  • Lobo, E. A., Callegaro, V. L., Wetzel, C. E., Hermany, G., & Bes, D. (2004c). Water quality study of Condor and Capivara streams, Porto Alegre municipal district, RS, Brazil, using epilithic diatoms biocenoses as bioindicators. Oceanological and Hydrobiological Studies, 33(2), 77–93.

    CAS  Google Scholar 

  • Lobo, E. A., Wetzel, C. E., Ector, L., Katoh, K., Blanco, S., & Mayama, S. (2010). Response of epilithic diatom communities to environmental gradients in subtropical temperate Brazilian rivers. Limnetica, 29(2), 323–340.

    Google Scholar 

  • Lowe, R. L. (1974). Environmental requirements and pollution tolerance of freshwater diatoms. Cincinnati: U.S. Environmental Protection Agency.

    Google Scholar 

  • Metzeltin, D., & García-Rodríguez, F. (2003). Las diatomeas uruguayas. Montevideo: DI.R.A.C. – Facultad de Ciencias.

    Google Scholar 

  • Metzeltin, D., & Lange-Bertalot, H. (1998). Tropische Diatomeen in Südamerika I. 700 überwiegend wenig bekannte oder neue Taxa repräsentativ als Elemente der neotropischen Flora. Iconographia Diatomologica, 5, 1–695.

    Google Scholar 

  • Metzeltin, D., & Lange-Bertalot, H. (2007). Tropical Diatoms of South America II. Special remarks on biogeographic disjunction. Iconographia Diatomologica, 18, 1–876.

    Google Scholar 

  • Metzeltin, D., Lange-Bertalot, H., & García-Rodríguez, F. (2005). Diatoms of Uruguay. Compared with other taxa from South America and elsewhere. Iconographia Diatomologica, 15, 1–736.

    Google Scholar 

  • Miller, J. R., & Tyler, G. (2007). Ciência Ambiental. São Paulo: Thomson Learning.

    Google Scholar 

  • Niemi, G. J., & McDonald, M. E. (2004). Application of ecological indicators. Annual Review of Ecology, Evolution, and Systematics, 35, 89–111. doi:10.1146/annurev.ecolsys.35.112202.130132.

    Article  Google Scholar 

  • Oliveira, M. A., Torgan, L. C., Lobo, E. A., & Schwarzbold, A. (2001). Association of periphytic diatom species on artificial substrate in lotic environments in the Arroio Sampaio basin, RS, Brazil: relationships with abiotic variables. Brazilian Journal of Biology, 61(4), 523–540.

    Article  CAS  Google Scholar 

  • Pantle, R., & Buck, H. (1955). Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas- und Wasserfach Wasser und Abwasser, 96, 609–620.

    Google Scholar 

  • Patrick, R., & Reimer, C. W. (1966). The diatoms of the United States exclusive of Alaska and Hawaii. Volume 1. Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Monographs of the Academy of Natural Sciences of Philadelphia, 13, 1–688.

    Google Scholar 

  • Potapova, M. G., & Charles, D. F. (2002). Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. Journal of Biogeography, 29(2), 167–187.

    Article  Google Scholar 

  • Potapova, M., & Charles, D. F. (2003). Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology, 48, 1311–1328.

    Article  CAS  Google Scholar 

  • Potapova, M., & Hamilton, P. B. (2007). Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. Journal of Phycology, 43, 561–575. doi:10.1111/j.1529-8817.2007.00332.x.

    Article  Google Scholar 

  • Rimet, F. (2012). Recent views on river pollution and diatoms. Hydrobiologia, 683, 1–24. doi:10.1007/s10750-011-0949-0.

    Article  Google Scholar 

  • Rimet, F., Trobajo, R., Mann, D. G., Kermarrec, L., France, A., Domaizon, I., & Bouchez, A. (2014). When is sampling complete? The effects of geographical range and marker choice on perceived diversity in Nitzschia palea (Bacillariophyta). Protist, 165, 245–259. doi:10.1016/j.protis.2014.03.005.

    Article  Google Scholar 

  • Rumrich, U., Lange-Bertalot, H., & Rumrich, M. (2000). Diatomeen der Anden. Von Venezuela bis Patagonien/Feuerland. Iconographia Diatomologica, 9, 1–649.

    Google Scholar 

  • Schneider, S. C., Cara, M., Eriksen, T. E., Goreska, B. B., Imeri, A., Kupe, L., Lokoska, T., Patceva, S., Trajanovska, S., Trajanovski, S., Talevska, M., & Sarafiloska, E. V. (2014). Eutrophication impacts littoral biota in Lake Ohrid while water phosphorus concentrations are low. Limnologica, 44, 90–97. doi:10.1016/j.limno.2013.09.002.

    Article  CAS  Google Scholar 

  • Schuch, M., Abreu-Júnior, E., & Lobo, E. A. (2012). Water quality of urban streams, Santa Cruz do Sul, Rio Grande do Sul, based on physical, chemical and biological analyses. Bioikos, 26(1), 3–12.

    Google Scholar 

  • Schuch, M., Oliveira, M. A., & Lobo, E. A. (2014). Spatial response of epilithic diatom communities to downstream nutrient increases. Water Environment Research. doi:10.2175/106143014X14062131178196.

    Google Scholar 

  • Seegert, G. (2000). The development, use, and misuse of biocriteria with an emphasis on the index of biotic integrity. Environmental Science & Policy, 3(supplement 1), 51–58.

    Article  Google Scholar 

  • Silva, A. M., Ludwig, T. A. V., Tremarin, P. I., & Vercellino, I. S. (2010). Diatomáceas perifíticas em um sistema eutrófico brasileiro (Reservatório do Iraí, estado do Paraná). Acta Botânica Brasílica, 24(4), 997–1016.

    Article  Google Scholar 

  • Szulc, B., & Szulc, K. (2013). The use of the Biological Diatom Index (BDI) for the assessment of water quality in the Pilica River, Poland. Oceanological and Hydrobiological Studies, 42, 188–194.

    Article  CAS  Google Scholar 

  • Ter Braak, C. J. F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5), 1167–1179.

    Article  Google Scholar 

  • Ter Braak, C. J. F., & Prentice, I. C. (1988). A theory of gradient analysis. Advances of Ecological Research, 18, 271–317.

    Google Scholar 

  • Tundisi, J. G. (2003). Água no século XXI: enfrentando a escassez. São Carlos: RiMa Editora/Instituto Internacional de Ecologia.

    Google Scholar 

  • Tundisi, J. G. (2006). O Futuro dos Recursos Hídricos no Brasil. Projeto Brasil das Águas. http://www.brasildasaguas.com.br/. Accessed 15 Dec 2013.

  • Tundisi, J. G., & Tundisi, T. M. (2008). Limnologia. São Paulo: Oficina de Textos.

    Google Scholar 

  • Van Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology, 28(1), 117–133.

    Article  Google Scholar 

  • Ward, J. H., JR. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.

  • Wetzel, C. E., Lobo, E. A., Oliveira, M. A., Bes, D., & Hermany, G. (2002). Diatomáceas epilíticas relacionadas a fatores ambientais em diferentes trechos dos rios Pardo e Pardinho, Bacia Hidrográfica do Rio Pardo, RS, Brasil: Resultados preliminares. Caderno de Pesquisa Série Biologia, 14(2), 17–38.

    Google Scholar 

Download references

Acknowledgments

The authors want to thank the undergraduate and graduate students from the fellowship programs of FAPERGS, CNPq, PUIC/UNISC, and PROSUP/CAPES linked to the Laboratory of Limnology of UNISC for their significant contribution to this area of study over the last decade. Each student was under the supervision of the senior author and made possible the quantitative database for this manuscript. Additionally, the authors want to thank the Brazilian CNPq for their financial support (MCT/CNPq/Universal - n° 14/2011) and the Universal Leaf Tobaccos Enterprise and Altadis Foundation for financially supporting the project titled “Payment for Environmental Services in the Andreas Stream Hydrographical Basin, Vera Cruz County, RS, Brazil,” during the period 2011–2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo A. Lobo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobo, E.A., Schuch, M., Heinrich, C.G. et al. Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems. Environ Monit Assess 187, 354 (2015). https://doi.org/10.1007/s10661-015-4586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4586-3

Keywords

Navigation