Skip to main content

Advertisement

Log in

Exploratory assessment of groundwater vulnerability to pollution in Abi, southeastern Nigeria, using geophysical and geological techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The geophysical-based integrated electrical conductivity (IEC) and the groundwater hydraulic confinement–overlying strata–depth to water table (GOD) techniques were used to assess vulnerability levels of aquifers and the extent of aquifer protection in Abi, Nigeria. The IEC indices was generated from constrained one dimensional (1D) inversion of vertical electrical sounding (VES) and two dimensional (2D) electrical resistivity tomography (ERT) data, acquired randomly in the area. The GOD indices were sourced from existing geologic data within the area. Results showed that IEC values vary from <0.1 S in the weakly protected areas to >2.0 S in the strongly protected areas. The GOD indices vary from <0.3 in the lowly vulnerable areas to 0.6 in the highly vulnerable areas. Thus, the groundwater resources in the area need to be properly managed for sustainability and such management practices have been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akpan, A. E., Ugbaja, A. N., & George, N. J. (2013). Integrated geophysical, geochemical and hydrogeological investigation of shallow groundwater resources in parts of the Ikom-Mamfe Embayment and the adjoining areas in Cross River State, Nigeria. Journal of Environmental Earth Sciences, 70, 1435–1456.

    Article  CAS  Google Scholar 

  • Aller, L, Bennet, T, Lehr, J.H., Petty, R.J., & Hackett, G. (1987). DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. US EPA, 600/2-87–035.

  • Almasri, M. N. (2008). Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine. Journal of Environmental Management, 88, 577–593.

    Article  CAS  Google Scholar 

  • Benkhelil, M. G., Ponsard, J. F., & Saugy, L. (1975). The Bornu-Benue Trough, the Niger Delta and its Offshore: Tectono-sedimentary reconstruction during the Cretaceous and Tertiary from geophysical data and geology. In C. A. Kogbe (Ed.), Geology of Nigeria (pp. 277–309). Lagos: Elizabethan Press.

    Google Scholar 

  • Braga, A. C., Filho, W. M., & Dourado, J. C. (2006). Resistivity (DC) method applied to aquifer protection studies. Revista Brasileira de Geofisica, 24(4), 573–581.

    Article  Google Scholar 

  • Casas, A., Himi, M., Diaz, Y., Pinto, V., Font, X., & Tapias, J. C. (2008). Assessing aquifer vulnerability to pollutants by electrical resistivity tomography (ERT) at a nitrate vulnerable zone in NE Spain. Environmental Geology, 54, 515–520.

    Article  CAS  Google Scholar 

  • Chambers, J. E., Wilkinson, P. B., Kuras, O., Ford, J. R., Gunn, D. A., Meldrum, P. I., Pennington, C. V. L., Weller, A. L., Hobbs, P. R. N., & Ogilvy, R. D. (2011). Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland basin, UK. Geomorphology, 125(4), 472–484.

    Article  Google Scholar 

  • Civita, M., & De Maio, M. (1997). SINTACS Un sistema parametricoper la valutazione e la cartografia per la valutazione della vulnerabilit’a degli acquiferi all’inquinamento, Metodologia e automazione. Bologna: Pitagora Ed. 191.

    Google Scholar 

  • Conrad, J., Hughes, S. & Weaver, J. (2002). Map production. In Zaporozec, A. (Ed.), Groundwater contamination inventory: a methodological guide (pp. 75-98). International Hydrological Programme-VI, No. 2, UNESCO.

  • de Groot-Hedlin, C., & Constable, S. (1990). Occam’s inversion to generate smooth, two dimensional models from magnetotelluric data. Geophysics, 55, 1613–1624.

    Article  Google Scholar 

  • Dobrin, M. B., & Savit, C. H. (1988). Introduction to geophysical prospecting (4th ed.). New York: McGraw-Hill Book Company.

    Google Scholar 

  • Draoui, M., Vias, J., Andreo, B., Targuist, K., & Stitou el MessarI, J. (2007). A comparative study of four vulnerability mapping methods in a detritic aquifer under Mediterranean climatic conditions. Environmental Geology, 54, 455–463.

    Article  Google Scholar 

  • Ducci, D., & Sellerino, M. (2012). Vulnerability mapping of groundwater contamination based on 3D lithostratigraphical models of porous aquifers. Journal of Science of the Total Environment, 447, 315–322.

    Article  Google Scholar 

  • Ebong, E. D. (2014). Hydrogeophysical and Physco-chemical investigation of the Presbyterian Primary School Ekureku Be Water borehole, Ekureku, Abi Local Government Area, Cross River State. Unpublished Technical Report submitted to Cross River State Community Development and Water Supply Agency.

  • Ebong, E. D., Akpan, A. E., & Onwuegbuche, A. A. (2014). Estimation of geohydraulic parameters from fractured shales and sandstone aquifers of Abi (Nigeria) using electrical resistivity and hydrogeologic measurements. Journal of African Earth Sciences, 96, 99–109.

    Article  CAS  Google Scholar 

  • Edet, A. E. (2014). An aquifer vulnerability assessment of the Benin Formation aquifer, Calabar, southeastern Nigeria, using DRASTIC and GIS approach. Journal of Environmental Earth Sciences, 71(4), 1747–1765.

    Article  Google Scholar 

  • Edet, A. E., & Okereke, C. S. (2002). Delineation of shallow groundwater aquifers in the Coastal Plain Sands area (Southern Nigeria) using surface resistivity and hydrogeological data. Journal of African Earth Sciences, 35, 433–443.

    Article  Google Scholar 

  • Egboka, B. C. E., & Okpoko, E. I. (1984). Gully erosion in the Agulu-Nanka region of Anambra State, Nigeria. Changes in African Hydrology and Water Resources (Proceedings of the Harare Symposium, July 1984). IAHS Publication No 144.

  • Egboka, B. C., & Uma, K. O. (1986). Hydrogeochemistry, contaminant transport and Tectonic effects in the Okposi-Uburu salt lake area of Imo state, Nigeria. Hydrological Science Journal, 31(2), 205–221.

    Article  CAS  Google Scholar 

  • Ekwueme, B. N., Nyong, E. E., & Petters, S. W. (1995). Geological excursion guide book to Oban Massif. Southeastern Nigeria: Calabar Flank and Mamfe Embayment.

    Google Scholar 

  • Eseme, E., Agyingi, C. M., & Foba-Tendo, J. (2002). Geochemistry and genesis of brine emanations from Cretaceous strata of the Mamfe Basin, Cameroon. Journal of African Earth Sciences, 35, 467–476.

    Article  CAS  Google Scholar 

  • Ezzy, T. R., Cox, M., O’Rourke, A. J., & Huftile, G. (2006). Groundwater flow modeling within a coastal alluvial plain setting using a high-resolution hydrofacies approach: Bells Creek plain, Australia. Hydrogeology Journal, 14, 675–688.

    Article  Google Scholar 

  • Foster, S. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In W. Van Duijvenbooden & H. G. Van-Waegeningh (Eds.), Vulnerability of soil and groundwater to pollutants (pp. 69–86). The Hague: Hydrological Research.

    Google Scholar 

  • Foster, S. S. D., Hirata, R., Gomes, D., D'Elia, M., & Paris, M. (2002). Groundwater quality protection: a guide for water utilities, municipal authorities and environment agencies (secondth ed.). Washington, DC: World Bank.

    Book  Google Scholar 

  • Fraga, C. M., Fernandes, L. F. S., Pacheco, F. A. L., Reis, C., & Moura, J. P. (2013). Exploratory assessment of groundwater vulnerability to pollution in the Sordo River Basin, Northeast of Portugal. REM: R. Esc. Minas, Ouro Preto, 66(1), 49–58.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs. New Jersey: Prentice-Hall Inc. 604 p.

  • Gemail, K. S., El-Shishtawy, A. M., El-Alfy, M., Ghoneim, M. F., & Abd El-Bary, M. (2011). Assessment of aquifer vulnerability to industrial waste water using resistivity measurements. A case study along El-Gharbyia main drain, Nile Delta, Egypt. Journal of Applied Geophysics, 75, 140–150.

    Article  Google Scholar 

  • Gogu, R. C., & Dassargues, A. (2000). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 39, 549–559.

    Article  CAS  Google Scholar 

  • Henriet, J. P. (1976). Direct applications of the Dar Zarrouk parameters in ground water surveys. Geophysical Prospecting, 24, 344–353.

    Article  Google Scholar 

  • Jassim, F. A., & Altaany, F. A. (2013). Image interpolation using Kriging technique for spatial data. Canadian Journal on Image Processing and Computer Vision, 4(2), 16–21.

    Google Scholar 

  • Javadi, S., Kavehkar, N., Mousavizadeh, M. H., & Mohammadi, K. (2011). Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas. Journal of Agricultural Science and Technology, 13(2), 239–249.

    Google Scholar 

  • Keller, G. V., & Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting. Oxford: Pergamon Press. 519 p.

    Google Scholar 

  • Kirsch, R., Sengpiel, K., & Voss, W. (2003). The use of electrical conductivity mapping in the definition of an aquifer vulnerability index. Near Surface Geophysics, 1, 3–20.

    Article  Google Scholar 

  • Kirsch, R. (2006). Groundwater geophysics: a tool for hydrogeology. Springer-Verlag Berlin Hendelberg. 493p.

  • Leone, A., Ripa, M. N., Uricchio, V., Dek, L., & Vargay, Z. (2009). Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary’s main aquifer using DRASTIC and GLEAMS models. Journal of Environmental Management, 90(10), 2969–2978.

    Article  CAS  Google Scholar 

  • Loke, M. H., & Barker, R. D. (1996). Practical techniques for rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 44, 131–152.

    Article  Google Scholar 

  • Loke, M. H., Acworth, I., & Dahlin, T. (2003). A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34, 182–187.

    Article  Google Scholar 

  • Maillet, R. (1947). The fundamental equations of electric prospecting. Geophysics 12, 529–556.

  • Mhomho Technologies & Environmental Services Ltd (2013). Drilling, construction of a one unit motorised water supply borehole and water quality analyses in Agbara-Ekureku. A Technical Report No. 123, pp. 23.

  • Murat, R. C. (1972). Stratigraphy and Paleogeography of the cretaceous and lower tertiary in southern Nigeria. In T. F. J. Dessauvagie & A. J. Whiteman (Eds.), African geology (pp. 251–266). Ibadan: Univ. Press, Ibadan.

    Google Scholar 

  • Neshat, A., Pradhan, B., Pirasteh, S., & Shafri, H. Z. M. (2013). Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environmental Earth Sciences. doi:10.1007/s12665-013-2690-7.

    Google Scholar 

  • Niwas, S., & Singhal, D. C. (1981). Estimation of aquifer transmissivity from Dar Zarrouck parameters in porous media. Journal of Hydrology, 50, 393–399.

    Article  Google Scholar 

  • Odigi, M. I., & Amajor, L. C. (2009). Geochemical characterization of Cretaceous sandstones from the Southern Benue Trough, Nigeria. Chinese Journal of Geochemistry, 28, 044–054.

    Article  CAS  Google Scholar 

  • Offodile, M. E. (1975). A review of the geology and Cretaceous of the Benue Valley. In C. A. Kogbe (Ed.), Geology of Nigeria (pp. 375–376). Lagos: Elizabethen Press.

    Google Scholar 

  • Okereke, C. S., Esu, E. O., & Edet, A. E. (1998). Determination of potential groundwater sites using geological and geophysical techniques in the Cross River State, southeastern Nigeria. Journal of African Earth Sciences, 27(1), 149–163.

    Article  Google Scholar 

  • Okiongbo, K. S., & Akpofure, E. (2012). Determination of aquifer properties and groundwater vulnerability mapping using geoelectric method in Yenagoa City and its environs in Bayelsa State, South South Nigeria. Journal of Water Resource and Protection, 4, 354–362.

    Article  Google Scholar 

  • Olayinka, A. I., & Yaramanci, U. (2000). Assessment of the reliability of 2D inversion of apparent resistivity data. Geophysical Prospecting, 48(2), 293–316.

    Article  Google Scholar 

  • Onwualu, J. N., Ukaegbu, V. U., & Okengwu, K. O. (2012). Source region inhomogeneity in igneous suite of Ishiagu, Southern Benue Trough, Nigeria. Archives of Applied Science Research, 4(2), 923–934.

    Google Scholar 

  • Orellana, E., & Mooney, A. M. (1966). Master curve and tables for vertical electrical sounding over layered structures. Escuela, Spain: Interciencia.

    Google Scholar 

  • Perles Roselló, M. J., Vías Martínez, J. M., & Andreo Navarro, B. (2009). Vulnerability of human environment to risk: case of groundwater contamination risk. Environment International, 3, 325–335.

    Article  Google Scholar 

  • Petters, S. W. (1989). A regional hydrogeological study of rural water supply options for planning and implementation of phase II rural water programme in Cross River State. Unpublished Technical Report submitted to DFFRI, Cross River State, pp 97.

  • Raju, N. J., & Reddy, T. V. K. (1998). Fracture pattern and electrical resistivity studies for groundwater exploration. Environmental Geology, 34(2–3), 175–182.

    Article  Google Scholar 

  • Reijers, T. J. A., & Nwajide, C. S., (1998). Geology of the Southern Anambra Basin. Unpublished Report for Chevron Nigeria Limited, Anambra Basin Field Course, p. 66.

  • Rijkswaterstaat, (1969). Standard Graphs for Resistivity Prospecting, European Association of Exploration Geophysicists, The Netherlands, The Hague.

  • Sharma, S. P., & Baranwal, V. C. (2005). Delineation of groundwater-bearing fracture zones in a hard rock integrating very low frequency electromagnetic and resistivity data. Journal of Applied Geophysics, 57, 155–166.

    Article  Google Scholar 

  • Sinkevich, M. G., Walter, M. T., Lembo, A. J., Jr., Richards, B. K., Peranginangin, N., Aburime, S. A., & Steenhuis, T. S. (2005). A GIS-based ground water contamination risk assessment tool for pesticides. Ground Water Monitoring & Remediation, 25(4), 82–91.

    Article  CAS  Google Scholar 

  • Sorensen, K. I., Auken, E., Christensen, N., & Pellerin, L. (2005). An integrated approach for hydrogeophysical investigations: new technologies and a case history. In D. K. Bulter (Ed.), Near-surface Geophysics (pp. 585–597). Tulsa: Society of Exploration Geophysicists.

    Chapter  Google Scholar 

  • Ukaegbu, V. U., & Akpabio, I. O. (2009). Geology and stratigraphy of middle cretaceous sequences Northeast of Afikpo Basin, Lower Benue Trough, Nigeria. Pacific Journal of Science and Technology, 103, 518–256.

    Google Scholar 

  • Van Beers, W. C. M., & Kleijnen, J. P. C. (2003). Kriging for interpolation in random simulation. Journal of Operational Research Society, 54, 255–262.

    Article  Google Scholar 

  • Van Stempvoort, D., Ewert, L., & Wassenaar, L. A. (1992). A method for groundwater protection mapping in the Prairie Provinces of Canada, Canada, PPWB Report No. 114. Saskatoon: National Hydreogeology Research Institute.

    Google Scholar 

  • Vender Velpen, B. P. A. (1988). A computer processing package for D.C. Resistivity interpretation for an IBM compatibles, ITC JouR, Natherlands Vol-4.

  • Vrba, J., & Zaporozec, A. (1994). Guidebook on mapping groundwater vulnerability. Verlag Heinz Heise, Hannover, Germany, International contributions to hydrogeology, 16, p 131.

  • Waskom, R. M. (1994). Best management practices for nitrogen fertilization. Bulletin #XCM-172, University Cooperative Extension, Colorado State University.

  • Wilkinson, P. B., Meldrum, P. I., Kuras, O., Chambers, J. E., Holyoake, S. J., & Ogilvy, R. D. (2010). High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer. Journal of Applied Geophysics, 70, 268–276.

    Article  Google Scholar 

  • Yadav, G. S., & Singh, S. K. (2007). Integrated resistivity surveys for delineation of fractures for ground water exploration in hard rock areas. Journal of Applied Geophysics, 62(3), 301–312.

    Article  Google Scholar 

  • Yadav, S. N., & Wall, D. B. (1998). Benefit-cost analysis of best management practices implemented to control nitrate contamination of groundwater. Water Resources Research, 34(3), 497–504.

    Article  CAS  Google Scholar 

  • Yin, L., Zhang, E., Wang, X., Wenninger, J., Dong, J., Guo, L., & Huang, J. (2012). A GIS-based DRASTIC model for assessing groundwater vulnerability in the Ordos Plateau, China. Environmental Earth Sciences, 69(1), 171–185.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of Calabar, Calabar-Nigeria that provided the resources, which the authors used in conducting the research. The contributions and suggestions from the anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony E. Akpan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akpan, A.E., Ebong, E.D. & Emeka, C.N. Exploratory assessment of groundwater vulnerability to pollution in Abi, southeastern Nigeria, using geophysical and geological techniques. Environ Monit Assess 187, 156 (2015). https://doi.org/10.1007/s10661-015-4380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4380-2

Keywords

Navigation