Skip to main content

Advertisement

Log in

Metal binding in soil cores and sediments in the vicinity of a dammed agricultural and industrial watershed

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The environment is witnessing a downgrade caused by the amelioration of the industrial and agricultural sectors, namely, soil and sediment compartments. For those reasons, a comparative study was done between soil cores and sediments taken from two locations in the Qaraaoun reservoir, Lebanon. The soil cores were partitioned into several layers. Each layer was analyzed for several physicochemical parameters, such as functional groups, particle size distribution, ζ-potential, texture, pH, electric conductivity, total dissolved solids, organic matter, cation exchange capacity, active and total calcareous, available sodium and potassium, and metal content (cadmium, copper, and lead). The metal content of each site was linked to soil composition and characteristics. The two sites showed distinguishable characteristics for features such as organic matter, pH, mineral fraction, calcareous, and metal content. The samples taken toward the south site (Q1), though contain lower organic matter than the other but are more calcareous, showed higher metal content in comparison to the other site (Q2) (average metal content of Q1 > Q2; for Cd 3.8 > 1.8 mg/kg, Cu 28.6 > 21.9 mg/kg, Pb 26.7 > 19 mg/kg). However, the metal content in this study did not correlate as much to the organic matter; rather, it was influenced by the location of the samples with respect to the dam, the reservoir’s hydrodynamics, the calcareous nature of the soil, and the variation of the industrial and agricultural influence on each site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Salam, M. A., & Salem, H. M. (2012). Interaction between potassium and organic manure application on growth of cowpea (Vigna unguiculata L.) and soil properties in newly reclaimed sandy soil. World Journal Agricultural Science, 8(2), 141–149.

    Google Scholar 

  • Abi-Ghanem, C., Bermond, A., Besançon, S., Nakhlé, K., & Khalaf, G. (2009). Cd and Pb extractability with EDTA in sediments of three contrasted sites of the Lebanese coast. Lebanon Science Journal, 10(2), 33–48.

    CAS  Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry bioavailability and risks of metals. New York: Springer.

    Book  Google Scholar 

  • ASTM D 2974. (2007). Standard test methods for moisture, ash, and organic matter of peat and other organic soils, American Society for Testing and Materials. Philadelphia, PA, USA, 4p.

  • Atekwana, E. A., Atekwana, E. A., Rowe, R. S., Werkema, D. D., & Legall, F. D. (2004). The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. Journal of Applied Geophysics, 56(4), 281–294.

    Article  Google Scholar 

  • Bai, E., Boutton, T. W., Liu, F., Wu, X. B., Hallmark, C. T., & Archer, S. R. (2012). Spatial variation of soil δ13C and its relation to carbon input and soil texture in a subtropical lowland woodland. Soil Biology and Biochemistry, 44(1), 102–112.

    Article  CAS  Google Scholar 

  • Baize, D., & Girard, M. C. A. F. E. S. (1992). Rèfèrentiel pèdologique: principaux sols d’Europe. Paris: INRA Èditions.

    Google Scholar 

  • Baize, D., Girard, M. C., & AFES (Association française pour l’etude du sol). (1995). Référentiel pédologique. Paris: INRA.

    Google Scholar 

  • Bentum, J. K., Anang, M., Boado, K. O., Koranteng-Addo, E. J., & Owusu Antwi, E. (2011). Assessment of heavy metals pollution of sediments from Fosu lagoon in Ghana. Bio Chemistry Society Ethiopian, 25(2), 191–196.

    CAS  Google Scholar 

  • Buccolieri, A., Buccolieri, G., Cardellicchio, N., Dell’Atti, A., Di Leo, A., & Maci, A. (2006). Heavy metals in marine sediments of Taranto gulf (Ionian Sea, Southern Italy). Marine Chemistry, 99(1–4), 227–235.

    Article  CAS  Google Scholar 

  • Callaway, J. C., Delaune, R. D., & Patrick, W. H. (1998). Heavy metal chronologies in selected coastal wetlands from Northern Europe. Marine Pollution Bulletin, 36(1), 82–96.

    Article  CAS  Google Scholar 

  • Carrillo-Gonzalez, R., Simunek, J., Sauvé, S., & Adriano, D. (2006). Mechanisms and pathways of trace element mobility in soils. Advances in Agronomy, 91, 111–178.

    Article  CAS  Google Scholar 

  • Cavallaro, N., & McBride, M. B. (1978). Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Science Society of America Journal, 42(4), 550–556.

    Article  CAS  Google Scholar 

  • CCME. Canadian Council of Ministers of the Environment. (2002). Canadian sediment quality guidelines for the protection of aquatic life (ISQGs) summary tables. Retrieved from www.ccme.ca/assets/pdf/sedqg_summary_table.pdf. Accessed Dec 2011.

  • Chesworth, W. (ed) (2008). Encyclopedia of soil science. Springer. The Netherlands.

  • Cottenic, A., & Verloo, M. (1984). Analytical diagnosis of soil pollution with heavy metals. Fresenius’ Journal of Analytical Chemistry, 317(3–4), 389–393.

    Article  Google Scholar 

  • Demirbas, A., Pehlivan, E., Gode, F., Altun, T., & Arslan, G. (2005). Adsorption of Cu (II), Zn (II), Ni (II), Pb (II), and Cd (II) from aqueous solution on Amberlite IR-120 synthetic resin. Journal of Colloid and Interface Science, 282(1), 20–25.

    Article  CAS  Google Scholar 

  • Du Laing, G., Vandecasteele, B., De Grauwe, P., Moors, W., Lesage, E., Meers, E., Tack, F. M., & Verloo, M. G. (2007). Factors affecting metal concentrations in the upper sediment layer of intertidal reedbeds along the river Scheldt. Journal of Environmental Monitoring, 9(5), 449–455.

    Article  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, E. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Science of the Total Environment, 407(13), 3972–3985.

    Article  Google Scholar 

  • Dudley, L. M., McLean, J. E., Sims, R. C., & Jurinak, J. J. (1988). Sorption of copper and cadmium from the water soluble fraction of an acid mine waste by two calcareous soils. Soil Science, 145(3), 207–214.

    Article  CAS  Google Scholar 

  • Dudley, L. M., McLean, J. E., Furst, T. H., & Jurinak, J. J. (1991). Sorption of cadmium and copper from an acid mine waste extract by two calcareous soils: column studies. Soil Science, 151(2), 121–135.

    Article  CAS  Google Scholar 

  • ELARD. (2011). Business plan for combating pollution of the Qaraoun Lake. Earth Link and Advanced Resources Development S.A.R.L. Beirut: UNDP.

    Google Scholar 

  • EN ISO 10693 (2014) Qualité du sol—détermination de la teneur en carbonate—méthode volumétrique, AFNOR, 11p

  • Eriksson, J. E. (1988). The effects of clay, organic matter and time on adsorption and plant uptake of cadmium added to the soil. Water, Air, and Soil Pollution, 40, 359–373.

    CAS  Google Scholar 

  • Foth, H. (1990). Fundamentals of soil science (8th ed.). New York: Wiley.

    Google Scholar 

  • Greenwood, R., & Kendall, K. (1999). Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis. Journal of the European Ceramic Society, 19, 479–488.

    Article  CAS  Google Scholar 

  • Hafizur Rahman, S., Khanam, D., Mehedi Adyel, T., Shahidul Islam, M., Aminul Ahsan, M., & Ahedul Akbor, M. (2012). Assessment of heavy metal contamination of agricultural soil around Dhaka export processing zone (DEPZ), Bangladesh: implication of seasonal variation and indices. Applied Sciences, 2, 584–601.

    Article  Google Scholar 

  • Horowitz, A. J., Elrick, K. A., & Hooper, R. P. (2006). The prediction of aquatic sediment-associated trace element concentrations using selected geochemical factors. Hydrological Processes, 3(4), 347–364.

    Article  Google Scholar 

  • Hseu, Z., Chen, Z., Tsai, C., Tsui, C., Cheng, S., Liu, C., & Lin, H. (2002). Digestion methods for total heavy metals in sediments and soils. Water, Air, and Soil Pollution, 141(1–4), 189–205.

    Article  CAS  Google Scholar 

  • Hubert, F. (2006). Modelisation des diffractogrammes de mineraux argileux en assemblages complexes dans deux sols de climat tempere. Implications mineralogique et pedologique. PhD thesis. Poitiers University, France.

  • Jurdi, M., Korfali, S., Karahagopian, N., Kreidieh, K. (2011). Wet season water quality survey of the Litani river basin project. American University of Beirut (AUB), Lebanon.

  • Kanbar, H.J., (2012). Trace-metal mobility in soil-water interface in an agricultural watershed and an industrial region in Lebanon. M.Sc thesis. Lebanese University, Hadat, Lebanon.

  • Kassir, L. N., Darwish, T., Shaban, A., Lartiges, B., & Ouaini, N. (2012). Mobility of selected trace elements in Mediterranean red soil amended with phosphogypsum: experimental study. Environmental Monitoring and Assessment, 184(7), 4397–4412.

    Article  CAS  Google Scholar 

  • Kumar, B., Kumar, S., Mishra, M., Singh, S. K., Prakash, D., Sharma, C. S., & Mukherjee, D. P. (2011). Geochemical fractionation of some heavy metals in soils in the vicinity of Sukinda mining area. Orissa Advanced Applications Science Research, 2(5), 263–272.

    CAS  Google Scholar 

  • Martin, J., & Whitfield, M. (1983). The significance of the river input of chemical elements to the ocean. Trace Metals in Sea Water, 9, 265–296.

    Article  CAS  Google Scholar 

  • Matabadal, A. (2013). Country report Lebanon. Rabobank. Rabobank, The Netherlands.

  • McBride, M. B., & Bouldin, D. R. (1984). Long-term reactions of copper II in a contaminated calcareous soil. Soil Science Society of America Journal, 48(1), 59–59.

    Article  Google Scholar 

  • Mclean, J.E., Bledsoe, B.E. (1992). Ground water issue, behavior of metals in soils. EPA/540/S-92/018. Utah, USA.

  • MoE/LEDO (Ministry of Environment/ Lebanese Environment and Development Observatory. (2001). State of the environment report, Lebanon.

  • Mohiuddin, K. M., Ogawa, Y., Zakir, H. M., Otomo, K., & Shikazono, N. (2011). Heavy metals contamination in water and sediments of an urban river in a developing country. International Journal Environment Science Technology, 8(4), 723–736.

    Article  CAS  Google Scholar 

  • Murray, K. S., Rogers, D. T., & Kaufman, M. M. (2004). Heavy metals in an urban watershed. Journal of Environmental Quality, 33(1), 163–172.

    Article  CAS  Google Scholar 

  • NF ISO 10390 (2005) Qualité du sol—détermination du pH, AFNOR, 11p.

  • NF ISO 11265 (1995) Qualité du sol—détermination de la conductivité électrique spécifique, AFNOR, 7p.

  • NF ISO 11466 (1995) Qualité du sol —extraction des éléments en traces solubles dans l’eau regale, AFNOR, 10p.

  • NF X31-106 (2002) Qualité des sols—détermination du calcaire actif, AFNOR, 6p.

  • NF X31-107 (2003) Qualité du sol—détermination de la distribution granulométrique des particules du sol—méthode à la pipette, AFNOR, 20p.

  • NF X31-109 (1993) Qualité du sol—détermination du carbone organique par oxydation sulfochromique, AFNOR, 7p.

  • NGSO. The National Guidelines and Standards Office. (2005). The Canadian Environmental Quality Guidelines. www.ec.gc.ca/ceqg-rcqe/English/default.cfm. Accessed May 2005

  • OECD. Organization for Economic Cooperation and Development. (2004). Test No. 312: leaching in soil columns. OECD guidelines for the testing of chemicals, section 3, OECD Publishing.

  • P05-002A, Harron, W. R. A., Webster, G. R., & Cairns, R. R. (1983). Relationships between exchangeable sodium and sodium adsorption ratio in a solonetzic soil association. Canadian Journal of Soil Science, 63, 461–467.

    Article  CAS  Google Scholar 

  • Papadopoulos, P., & Rowell, D. L. (1988). The reactions of cadmium with calcium carbonate surfaces. European Journal of Soil Science, 39(1), 23–36.

    Article  CAS  Google Scholar 

  • Santillan-Medrano, J., & Jurinak, J. J. (1975). The chemistry of lead and cadmium in soil: solid phase formation. Soil Science Society of America Journal, 39(5), 851–856.

    Article  CAS  Google Scholar 

  • Schmidt, J. (Ed.). (2000). Soil erosion: application of physically based models. Freiberg: Springer Science & Business Media.

    Google Scholar 

  • Schulz-Zunkel, C., & Krueger, F. (2009). Trace metal dynamics in floodplain soils of the river Elbe: a review. Journal of Environmental Quality, 38(4), 1349–1362.

    Article  CAS  Google Scholar 

  • Shaban, A., & Nassif, N. (2007). Pollution in Qaraaoun Lake, Central Lebanon. Journal of Environmental Hydrology, 15(11), 1–14.

    Google Scholar 

  • Shafie, N. A., Aris, A. Z., Zakaria, M. P., Haris, H., Lim, W. Y., & Isa, N. M. (2013). Application of geoaccumulation index and enrichment factors on the assessment of heavy metal pollution in the sediments. Journal of Environmental Science and Health, Part A Environmental Science, 48, 182–190.

    Article  CAS  Google Scholar 

  • Shriadah, M. M. A. (1999). Heavy metals in mangrove sediments of the United Arab Emirates shoreline (Arabian Gulf). Water, Air, and Soil Pollution, 116(3–4), 523–534.

    Article  CAS  Google Scholar 

  • Smil, V. (2002). A handbook of industrial ecology. Part IV: industrial ecology at the national/regional level (p. 680). Cheltenham: Edward Elgar Publishing Limited.

    Google Scholar 

  • Soares, H. M. V. M., Boaventura, R. A. R., Machado, A. A. S. C., & Esteves da Silva, J. C. G. (1999). Sediments as monitors of heavy metal contamination in the Ave River Basin (Portugal): multivariate analysis of data. Environmental Pollution, 105(3), 311–323.

    Article  CAS  Google Scholar 

  • Somasundaran, P. (Ed.). (2006). Encyclopedia of surface and colloid science, vol. 1 (2nd ed.). Florida: CRC Press.

    Google Scholar 

  • Sukreeyapongse, O., Holm, P. E., Strobel, B. W., Panichsakpatana, S., Magid, J., & Hansen, H. C. (2002). pH-dependent release of cadmium, copper, and lead from natural and sludge-amended soils. Journal of Environmental Quality, 31(6), 1901–1909.

    Article  CAS  Google Scholar 

  • Takai, Y., & Asami, T. (1962). Formation of methyl mercaptan in paddy poils l. Journal Soil Science Plant Nutrition, 8(3), 40–44.

    Article  Google Scholar 

  • Thien, S. J., & Graveel, J. G. (2003). Laboratory manual for soil science, agricultural and environmental principles Preliminary. Iowa: Kendall/Hunt publishing company.

    Google Scholar 

  • Tokalioglu, S., Kartal, S., & Birol, G. (2003). Comparison of three sequential extraction procedure for portioning of heavy metals in car park dust. Journal of Environmental Monitoring, 5, 468–476.

    Article  CAS  Google Scholar 

  • USAID. United States Agency for International Development. (2005a). Litani water quality management project (BAMAS). Technical survey report, summer conditions. Beirut: USAID.

    Google Scholar 

  • USAID. United States Agency for International Development. (2005b). Litani water quality management project (BAMAS). Beirut: Final report. USAID.

    Google Scholar 

  • Van der Gaag, M. A., Stortelder, P. B. M., Van Der Kooy, L. A., & Bruggeman, W. A. (1991). Setting environmental quality criteria for water and sediments in the Netherlands: a programmatic ecotoxicological approach. Europe Water Pollut Control, 1(3), 13–20.

    Google Scholar 

  • Yisa, J., Jacob, J. O., & Onoyima, C. C. (2012). Assessment of toxic levels of some heavy metals in road deposited sediments in Suleja. Nigeria American Journal Chemistry, 2(2), 34–37.

    Article  CAS  Google Scholar 

  • Zaranyika, M. F., & Chirinda, T. (2011). Heavy metal speciation trends in mine slime dams: a case study of slime dams at a goldmine in Zimbabwe. Journal Environment Chemistry Ecotoxicoly, 3(5), 103–115.

    CAS  Google Scholar 

  • Zheng, S., & Zhang, M. (2011). Effect of moisture regime on the redistribution of heavy metals in paddy soil. Journal of Environmental Sciences, 12(3), 434–443.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the research grant programs of the Lebanese University and the Lebanese Council for Scientific Research (CNRS). We also acknowledge the support of “Projets de Coopération Scientifique Inter-universitaire” (PCSI) programs in the “Agence Universitaire de la Francophonie” (AUF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein Jaafar Kanbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanbar, H.J., Hanna, N., El Samrani, A.G. et al. Metal binding in soil cores and sediments in the vicinity of a dammed agricultural and industrial watershed. Environ Monit Assess 186, 8793–8806 (2014). https://doi.org/10.1007/s10661-014-4044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-4044-7

Keywords

Navigation