Skip to main content

Advertisement

Log in

Improving artificial forest biomass estimates using afforestation age information from time series Landsat stacks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

China maintains the largest artificial forest area in the world. Studying the dynamic variation of forest biomass and carbon stock is important to the sustainable use of forest resources and understanding of the artificial forest carbon budget in China. In this study, we investigated the potential of Landsat time series stacks for aboveground biomass (AGB) estimation in Yulin District, a key region of the Three-North Shelter region of China. Firstly, the afforestation age was successfully retrieved from the Landsat time series stacks in the last 40 years (from 1974 to 2013) and shown to be consistent with the surveyed tree ages, with a root-mean-square error (RMSE) value of 4.32 years and a determination coefficient (R 2) of 0.824. Then, the AGB regression models were successfully developed by integrating vegetation indices and tree age. The simple ratio vegetation index (SR) is the best candidate of the commonly used vegetation indices for estimating forest AGB, and the forest AGB model was significantly improved using the combination of SR and tree age, with R 2 values from 0.50 to 0.727. Finally, the forest AGB images were mapped at eight epochs from 1985 to 2013 using SR and afforestation age. The total forest AGB in seven counties of Yulin District increased by 20.8 G kg, from 5.8 G kg in 1986 to 26.6 G kg in 2013, a total increase of 360 %. For the persistent forest area since 1974, the forest AGB density increased from 15.72 t/ha in 1986 to 44.53 t/ha in 2013, with an annual rate of about 0.98 t/ha. For the artificial forest planted after 1974, the AGB density increased about 1.03 t/ha a year from 1974 to 2013. The results present a noticeable carbon increment for the planted artificial forest in Yulin District over the last four decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andersen, H. E., Strunk, J., Temesgen, H., Atwood, D., & Winterberger, K. (2011). Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska. Canadian Journal of Remote Sensing, 37, 1–16.

    Google Scholar 

  • Ardo, J. (1992). Volume quantification of coniferous forest compartments using spectral radiance recorded by Landsat Thematic Mapper. International Journal of Remote Sensing, 13, 1779–1786.

    Article  Google Scholar 

  • Caccetta, P., Furby, S., O’Connell, J., Wallace, J., & Wu, X. (2007). Continental monitoring: 34 years of land cover change using Landsat imagery. In: 32nd International Symposium on Remote Sensing of Environment (pp. 25–29).

  • Cohen, W. B., Maiersperger, T. K., Gower, S. T., & Turner, D. P. (2003). An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sensing of Environment, 84, 561–571.

    Article  Google Scholar 

  • Crow, T. R., & Schlaegel, B. E. (1988). A guide to using regression equations for estimating tree biomass. Northern Journal of Applied Forestry, 5, 15–22.

    Google Scholar 

  • Dong, J. R., Kaufmann, R. K., Myneni, R. B., Tucker, C. J., Kauppi, P. E., Liski, J., et al. (2003). Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources and sinks. Remote Sensing of Environment, 84, 393–410.

    Article  Google Scholar 

  • Du, H., Cui, R., & Zhou, G. (2010). The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI. Acta Ecologica Sinica, 30, 257–263.

    Article  Google Scholar 

  • Foody, G. M., Cutler, M. E., McMorrow, J., Pelz, D., Tangki, H., Boyd, D. S., et al. (2001). Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 10, 379–387.

    Article  Google Scholar 

  • Foody, G. M., Boyd, D. S., & Cutler, M. E. J. (2003). Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85, 463–474.

    Article  Google Scholar 

  • Franklin, J., & Strahler, A. H. (1988). Thematic mapper analysis of coniferous forest structure and composition. International Journal of Remote Sensing, 26, 809–825.

    Google Scholar 

  • Gallaun, H., Zanchi, G., Nabuurs, G., Hengeveld, G., Schardt, M., & Verkerk, P. J. (2010). EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. Forest Ecology and Management, 260, 252–261.

    Article  Google Scholar 

  • Gasparri, N. I., Parmuchi, M. G., Bono, J., Karszenbaum, H., & Montenegro, C. L. (2010). Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina. Journal of Arid Environments, 74, 1262–1270.

    Article  Google Scholar 

  • Gleason, C. J., & Im, J. (2011). A review of remote sensing of forest biomass and biofuel: options for small-area applications. GIScience and Remote Sensing, 48, 141–170.

    Article  Google Scholar 

  • Hall, R. S., Skakun, R. J., Arsenault, E. J., & Case, B. S. (2006). Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume. Forest Ecology and Management, 225, 378–390.

    Article  Google Scholar 

  • Heiskanen, J. (2006). Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data. International Journal of Remote Sensing, 27, 1135–1158.

    Article  Google Scholar 

  • Hu, Y., Liu, L., Peng, D., Jiao, Q., & Zhang, H. (2014). A Landsat-5 atmospheric correction based on MODIS atmosphere products and 6S model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. doi:10.1109/JSTARS.2013.2290028.

    Google Scholar 

  • Huang, C., Goward, S. N., Masek, J. G., Gao, F., Vermote, E. F., Thomas, N., et al. (2009a). Development of time series stacks of Landsat images for reconstructing forest disturbance history. International Journal of Digital Earth, 2, 195–218.

    Article  Google Scholar 

  • Huang, C., Goward, S. N., Schleeweis, K., Thomas, N., Masek, J. G., & Zhu, Z. (2009b). Dynamics of national forests assessed using the Landsat record: case studies in eastern United States. Remote Sensing of Environment, 113, 1430–1442.

    Article  Google Scholar 

  • Huang, C., Goward, S. N., Masek, J. G., Thomas, N., Zhu, Z., & Vogelmann, J. E. (2010). An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment, 114, 183–198.

    Article  Google Scholar 

  • Huete, A. R., Liu, H. Q., Batchily, K., & Vanleeuwen, W. (1997). A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59, 440–451.

    Article  Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology, 50, 663–666.

    Article  Google Scholar 

  • Kennedy, R. E., Cohen, W. B., & Schroeder, T. A. (2007). Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sensing of Environment, 110, 370–386.

    Article  Google Scholar 

  • Kennedy, R. E., Yang, Z. G., & Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1 LandTrendr—temporal segmentation algorithms. Remote Sensing of Environment, 114, 2897–2910.

    Article  Google Scholar 

  • Lehmann, E. A., Wallace, J. F., Caccetta, P. A., Furby, S. L., & Zdunic, K. (2013). Forest cover trends from time series Landsat data for the Australian continent. International Journal of Applied Earth Observation and Geoinformation, 21, 453–462.

    Article  Google Scholar 

  • Li, M., Huang, C., Zhu, Z., Wen, W., Xu, D., & Liu, A. (2009). Use of remote sensing coupled with a vegetation change tracker model to assess rates of forest change and fragmentation in Mississippi, USA. International Journal of Remote Sensing, 30, 6559–6574.

    Article  Google Scholar 

  • Li, H., Mausel, P., Brondizio, E., & Deardorff, D. (2010). A framework for creating and validating a non-linear spectrum-biomass model to estimate the secondary succession biomass in moist tropical forests. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 241–254.

    Article  Google Scholar 

  • Liu, L., Tang, H., Caccetta, P., Lehmann, E. A., Hu, Y., & Wu, X. (2013). Mapping afforestation and deforestation from 1974 to 2012 using Landsat time-series stacks in Yulin District, a key region of the Three-North Shelter region, China. Environmental Monitoring and Assessment, (accepted).

  • Lu, D. (2005). Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. International Journal of Remote Sensing, 26, 2509–2525.

    Article  Google Scholar 

  • Lu, D. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27, 1297–1328.

    Article  Google Scholar 

  • Lu, D., & Batistella, M. (2005). Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon. Acta Amazonica, 35, 249–257.

    Article  Google Scholar 

  • Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management, 198, 149–167.

    Article  Google Scholar 

  • Lu, D., Batistella, M., & Moran, E. (2005). Satellite estimation of aboveground biomass and impacts of forest stand structure. Photogrammetric Engineering and Remote Sensing, 71, 967–974.

    Article  Google Scholar 

  • Lu, D., Chen, Q., Wang, G., Moran, E., Batistella, M., Zhang, M., et al. (2012). Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. International Journal of Forestry Research, Article ID 436537. doi:10.1155/2012/436537.

  • Madugundu, R., Nizalapur, V., & Jha, C. S. (2008). Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka, India. International Journal of Applied Earth Observation and Geoinformation, 10, 211–219.

    Article  Google Scholar 

  • Main-Knorn, M., Cohen, B. W., Kennedy, E. R., Grodzki, W., Pflugmacher, D., Griffiths, P., et al. (2013). Monitoring coniferous forest biomass change using a Landsat trajectory-based approach. Remote Sensing and Environment, 139, 277–290.

    Article  Google Scholar 

  • Mäkelä, H., & Pekkarinen, A. (2004). Estimation of forest stand volumes by Landsat TM imagery and stand-level field inventory data. Forest Ecology and Management, 196, 245–255.

    Article  Google Scholar 

  • Myneni, R. B., Dong, J. R., Tucker, C. J., Kaufmann, R. K., Kauppi, P. E., Liski, J., et al. (2001). A large carbon sink in the woody biomass of Northern forests. Proceedings of the National Academy of Sciences of the United States of America, 98, 14784–14789.

    Article  CAS  Google Scholar 

  • Powell, S., Cohen, W., Healey, S., Kennedy, R., Moisen, G., Pierce, K., et al. (2010). Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sensing of Environment, 114, 1053–1068.

    Article  Google Scholar 

  • Roy, P. S., & Ravan, S. A. (1996). Biomass estimation using satellite remote sensing data-an investigation on possible approaches for natural forest. Journal of Biosciences, 21, 535–561.

    Article  Google Scholar 

  • Sarker, L. R., & Nichol, J. E. (2011). Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sensing of Environment, 115, 968–977.

    Article  Google Scholar 

  • Shao, J. (1993). Linear model selection by cross-validation. Journal of the American Statistical Association, 88, 486–494.

    Article  Google Scholar 

  • Soenen, S. A., Peddle, D. R., Hall, R. J., Coburn, C. A., & Hall, F. G. (2010). Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sensing of Environment, 114(7), 1325–1337.

    Article  Google Scholar 

  • Song, C. (2013). Optical remote sensing of forest leaf area index and biomass. Progress in Physical Geography, 37, 98–113.

    Article  Google Scholar 

  • Steininger, M. K. (2000). Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. International Journal of Remote Sensing, 21, 1139–1157.

    Article  Google Scholar 

  • Tangki, H., & Chappell, N. A. (2008). Biomass variation across selectively logged forest within a 225-km2 region of Borneo and its prediction by Landsat TM. Forest Ecology and Management, 256, 1960–1970.

    Article  Google Scholar 

  • Teillet, P., Guindon, B., & Goodenough, D. (1982). On the slope-aspect correction of multispectral scanner data. Canadian Journal of Remote Sensing, 8, 84–106.

    Article  Google Scholar 

  • Tian, X., Su, Z., Chen, E., Li, Z., Tol, C., Guo, J., et al. (2012). Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area. International Journal of Applied Earth Observation and Geoinformation, 14, 160–168.

    Article  Google Scholar 

  • Tomppo, E., Nilsson, M., Rosengren, M., Aalto, P., & Kennedy, P. (2002). Simultaneous use of Landsat-TM and IRS-1CWiFS data in estimating large area tree stem volume and aboveground biomass. Remote Sensing of Environment, 82, 156–171.

    Article  Google Scholar 

  • Tucker, C. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.

    Article  Google Scholar 

  • Vermote, E. F., Tanré, D., Deuze, J. L., Herman, M., & Morcrette, J. J. (1997). Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 675–686.

    Article  Google Scholar 

  • Wu, X., Furby, S., & Wallace, J. (2004). An approach for terrain illumination correction. In: The 12th Australasian Remote Sensing and Photogrammetry conference proceedings, Fremantle, Western Australia (pp. 18–22).

  • Zha, Y., Liu, Y., & Deng, X. (2007). A landscape approach to quantifying land cover changes in Yulin, Northwest China. Environmental Monitoring and Assessment, 138, 139–147.

    Article  Google Scholar 

  • Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., Moine, J., et al. (2004). Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment, 93, 402–411.

    Article  Google Scholar 

  • Zheng, G., Chen, J. M., Tian, Q. J., Ju, W. M., & Xia, X. Q. (2007). Combining remote sensing imagery and forest age inventory for biomass mapping. Journal of Environmental Management, 85, 616–623.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support provided for this research by the External Cooperation Program of the Chinese Academy of Sciences (GJH21123) and the National Natural Science Foundation of China (41222008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangyun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Peng, D., Wang, Z. et al. Improving artificial forest biomass estimates using afforestation age information from time series Landsat stacks. Environ Monit Assess 186, 7293–7306 (2014). https://doi.org/10.1007/s10661-014-3927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3927-y

Keywords

Navigation