Skip to main content

Advertisement

Log in

Seasonal dynamics of Vibrio cholerae and its phages in riverine ecosystem of Gangetic West Bengal: cholera paradigm

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Gangetic delta is a century-old cholera endemic belt where the role of riverine–estuarine ecosystem in cholera transmission has never been elucidated. Seasonality, distribution, and abundance of environmental Vibrio cholerae O1/O139 and vibriophage in Hooghly riverine–estuarine environment and their correlation with cholera incidence pattern in West Bengal, India, have been analyzed for the first time across summer, monsoon, and winter months. A total of 146 water samples collected from two sites of the Hooghly River (Howrah and Diamond Harbour) were analyzed physicochemically along with cultivable Vibrio count (CVC), V. cholerae O1/O139, and vibriophages. V. cholerae O1 was detected in 56 (38.3 %) samples, while 66 (45.2 %) were positive for V. cholerae O1 phages. Flood tide, water temperature (31 ± 1.6 °C), and turbidity (≥250 nephelometric turbidity unit (NTU)) significantly stimulated V. cholerae and vibriophage abundance in riverine ecosystem. Solitary existence of V. cholerae O1 and phages (p < 0.0001) in aquatic environment divulges the dominance of either of the entity (V. cholerae O1 or V. cholerae O1 Φ) on the other. Significant association (p < 0.05) between Kolkata cholera cases and V. cholerae O1 in aquatic environment implies the role of riverine–estuarine ecosystem in cholera transmission. A “biomonitoring tool” of physicochemical stimulants, tidal, and climatic variants has been proposed collating V. cholerae and phage dynamics that can forewarn any impending cholera outbreak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alam, M., Sultana, M., Nair, G. B., Siddique, A. K., Hasan, N. A., Sack, R. B., et al. (2007). Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proceedings of the National Academy of Sciences, 104(45), 17801–17806.

    Article  CAS  Google Scholar 

  • Alam, M., Islam, A., Bhuiyan, N. A., Rahim, N., Hossain, A., Khan, G. Y., et al. (2011). Clonal transmission, dual peak, and off-season cholera in Bangladesh. Infection Ecology and Epidemiology, 1. doi:10.3402/iee.v1i0.7273.

  • American Public Health Association. (2001). Method 1602: Male-specific (F+) and somatic coliphage in water by single agar layer (SAL) procedure. Washington, D.C.: United States Environmental Protection Agency. 20460.

    Google Scholar 

  • Batabyal, P., Mookerjee, S., & Palit, A. (2012). Occurrence of toxic Vibrio cholerae in accessible water sources of cholera endemic foci of India. Japanese Journal of Infectious Diseases, 65, 358–360.

    Article  Google Scholar 

  • Bergh, O., Borsheim, K. Y., Bratbak, G., & Heldal, M. (1989). High abundance of viruses found in aquatic environments. Nature, 340, 467–468.

    Article  CAS  Google Scholar 

  • Bhowmick, T. S., Das, M., Ruppitsch, W., Stoeger, A., Pietzka, A. T., Allerberger, F., et al. (2009). Detection of virulence-associated and regulatory protein genes in association with phage typing of human Vibrio cholerae from several geographical regions of the world. Journal of Medical Microbiology, 58, 1160–1167.

    Article  CAS  Google Scholar 

  • Carbonetti, A., Rodríguez, M. L., Noelia, R., & Martina, Y. (2007). The cholera epidemics in Córdoba as seen through the press: the supply of preservatives and cures during the 1867–1868 epidemic. História, Ciências, Saúde – Manguinhos, 14(2), 405–419.

    Article  Google Scholar 

  • Colwell, R. R. (1996). Global climate and infectious disease: the cholera paradigm. Science, 274, 2025–2031.

    Article  CAS  Google Scholar 

  • Das, M., Bhowmick, T. S., Nandy, R. K., Nair, G. B., & Sarkar, B. L. (2009). Surveillance of vibriophages reveals their role as biomonitoring agents in Kolkata. FEMS Microbiology Ecology, 67(3), 502–510.

    Article  CAS  Google Scholar 

  • Faruque, S. M., Naser, I. B., Islam, M. J., Faruque, A. S., Ghosh, A. N., Nair, G. B., et al. (2005). Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proceedings of the National Academy of Sciences, 102(5), 1702–1707.

    Article  CAS  Google Scholar 

  • Faruque, S. M., Islam, M. J., Ahmad, Q. S., Biswas, K., Faruque, A. S., Nair, G. B., et al. (2006). An improved technique for isolation of environmental Vibrio cholerae with epidemic potential: monitoring the emergence of a multiple antibiotic-resistant epidemic strain in Bangladesh. Journal of Infectious Diseases, 193, 1029–1036.

    Article  CAS  Google Scholar 

  • Harris, J. B., LaRocque, R. C., Qadri, F., Ryan, E. T., & Calderwood, S. B. (2012). Cholera. Lancet, 379(9835), 2466–2476.

    Article  Google Scholar 

  • Hoshino, K., Yamasaki, S., Mukhopadhay, A. K., Chakraborty, S., Basu, A., Bhattacharya, S. K., et al. (1998). Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae O1 and O139. FEMS Immunology and Medical Microbiology, 20, 201–207.

    Article  CAS  Google Scholar 

  • Islam, M. S., Hasan, M. K., Miah, M. A., Qadri, F., Yunus, M., Sack, R. B., et al. (1993). Isolation of Vibrio cholerae O139 Bengal from water in Bangladesh. Lancet, 342, 430.

    Article  CAS  Google Scholar 

  • Jiang, S. C., Thurmond, J. M., Pichard, S. L., & Paul, J. H. (1992). Concentration of microbial populations from aquatic environments by vortex flow filtration. Marine Ecology Progress Series, 80, 101–107.

    Article  Google Scholar 

  • Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., et al. (2008). Global trends in emerging infectious diseases. Nature, 451(21), 990–994.

    Article  CAS  Google Scholar 

  • Kamruzzaman, M., Udden, S. M., Cameron, D. E., Calderwood, S. B., Nair, G. B., et al. (2010). Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 107, 1588–1593.

    Article  CAS  Google Scholar 

  • Kawasaki, S., Horikoshi, N., Okada, Y., Takeshita, K., Sameshima, T., & Kawamoto, S. (2005). Multiplex PCR for simultaneous detection of Salmonella spp., Listeria monocytogenes, and Escherichia coli O157: H7 in meat samples. Journal of Food Protection, 68(3), 551–556.

    CAS  Google Scholar 

  • Keasler, S. P., & Hall, R. H. (1993). Detecting and biotyping Vibrio cholerae O1 with multiplex polymerase chain reaction. Lancet, 341, 1661.

    Article  CAS  Google Scholar 

  • Lara, R. J., Neogi, S. B., Islam, M. S., Mahmud, Z. H., Yamasaki, S., & Nair, G. B. (2009). Influence of catastrophic climatic events and human waste on Vibrio distribution in the Karnaphuli estuary, Bangladesh. EcoHealth, 6(2), 279–286.

    Article  Google Scholar 

  • Lara, R. J., Neogi, S. B., Islam, M. S., Mahmud, Z. H., Islam, S., Paul, D., et al. (2011). Vibrio cholerae in waters of the Sunderban mangrove: relationship with biogeochemical parameters and chitin in seston size fractions. Wetlands Ecology Management, 19, 109–119.

    Article  Google Scholar 

  • Lipp, E. K., Huq, A., & Colwell, R. R. (2002). Effects of global climate on infectious disease: the cholera model. Clinical Microbiology Reviews, 15, 757–770.

    Article  Google Scholar 

  • Merrell, D. S., Butler, S. M., Qadri, F., Dolganov, N. A., Alam, A., Cohen, M. B., et al. (2002). Host-induced epidemic spread of the cholera bacterium. Nature, 417, 642–645.

    Article  CAS  Google Scholar 

  • Neogi, S. B., Koch, B. P., Schmitt-kopplin, P., Pohl, C., Kattner, G., Yamasaki, S., et al. (2011). Biogeochemical controls on the bacterial populations in the eastern Atlantic Ocean. Biogeosciences, 8, 3747–3759.

    Article  CAS  Google Scholar 

  • Neogi, S. B., Islam, M. S., Nair, G. B., Yamasaki, S., & Lara, R. (2012). Occurrence and distribution of plankton-associated and free-living toxigenic Vibrio cholerae in a tropical estuary of a cholera endemic zone. Wetlands Ecology and Management, 20, 271–285.

    Article  Google Scholar 

  • Palit, A., & Batabyal, P. (2010). Toxigenic Vibrio cholerae from environmental sources associated with the cholera outbreak after ‘AILA’ cyclone in West Bengal, India. Letters in Applied Microbiology, 51(2), 241–243.

    CAS  Google Scholar 

  • Paul, D., Mahmud, Z. H., Islam, M. S., Neogi, S. B., Islam, M. S., & Jahid, I. K. (2012). Physiochemical conditions and contamination with Vibrios of surface water at Matlab, Bangladesh. Journal of Microbiology, Biotechnology and Food Sciences, 2(2), 713–729.

    Google Scholar 

  • Rainfall data. http://climate.usurf.usu.edu/mapGUI/mapGUI.php. Accessed on 17 July 2013.

  • Seed, K. D., Faruque, S. M., Mekalanos, J. J., Calderwood, S. B., Qadri, F., & Camilli, A. (2012). Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathogen, 8(9), e1002917. doi:10.1371/journal.ppat.1002917.

    Article  CAS  Google Scholar 

  • WHO Technical Report, WHO Kobe, 2010. www.who.or.jp/publications/2011/report_kolkata_final_june11.pdf.

  • Tunung, R., Margaret, S. P., Jeyaletchumi, P., Chai, L. C., Tuan Zainazor, T. C., Ghazali, F. M., et al. (2009). Prevalence and quantification of Vibrio parahemolyticus in raw salad vegetables at retail level. Journal of Microbiology and Biotechnology, 20, 391–396.

    Google Scholar 

  • Waldor, M. K., & Mekalanos, J. J. (1996). Lysogenic conversion by a filamentous phage encoding cholera toxin. Science, 272, 1910–1914.

    Article  CAS  Google Scholar 

  • Yamasaki, S., Asakura, M., Shiramaru, S., Neogi, S. B., Hinenoya, A., Samosornsuk, W., et al. (2010). Molecular epidemiology of Vibrio cholerae and campylobacters isolated in Asian countries. In K. Tanaka, Y. Niki, & A. Kozake (Eds.), Current topics of infectious diseases in Japan and Asia, Part −1 (pp. 25–43). Tokyo: Springer. ISBN 978-4-431-53873-8.

    Chapter  Google Scholar 

  • You, Y. A., Ali, M., Kanungo, S., Sah, B., Manna, B., et al. (2013). Risk map of cholera infection for vaccine deployment: the eastern Kolkata case. PLoS ONE, 8(8), e71173. doi:10.1371/journal.pone.0071173.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Indo-German (DST-DAAD) project grant (no. INT/FRG/DFG/P-31/2010) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Palit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mookerjee, S., Jaiswal, A., Batabyal, P. et al. Seasonal dynamics of Vibrio cholerae and its phages in riverine ecosystem of Gangetic West Bengal: cholera paradigm. Environ Monit Assess 186, 6241–6250 (2014). https://doi.org/10.1007/s10661-014-3851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3851-1

Keywords

Navigation