Skip to main content

Advertisement

Log in

Comparison of elemental and black carbon measurements during normal and heavy haze periods: implications for research

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Studies specifically addressing the elemental carbon (EC)/black carbon (BC) relationship during the transition from clean-normal (CN) air quality to heavy haze (HH) are rare but have important health and climate implications. The present study, in which EC levels are measured using a thermal-optical method and BC levels are measured using an optical method (aethalometer), provides a preliminary insight into this issue. The average daily EC concentration was 3.08 ± 1.10 μg/m3 during the CN stage but climbed to 11.77 ± 2.01 μg/m3 during the HH stage. More importantly, the BC/EC ratio averaged 0.92 ± 0.14 during the CN state and increased to 1.88 ± 0.30 during the HH state. This significant increase in BC/EC ratio has been confirmed to result partially from an increase in the in situ light absorption efficiency (σ ap) due to an enhanced internal mixing of the EC with other species. However, the exact enhancement of σ ap was unavailable because our monitoring scheme could not acquire the in situ absorption (b ap) essential for σ ap calculation. This reveals a need to perform simultaneous measurement of EC and b ap over a time period that includes both the CN and HH stages. In addition, the sensitivity of EC to both anthropogenic emissions and HH conditions implies a need to systematically study how to include EC complex (EC concentration, OC/EC ratio, and σ ap) as an indicator in air quality observations, in alert systems that assess air quality, and in the governance of emissions and human behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, R. J., Sherwood, S. C., Norris, J. R., & Zender, C. S. (2012). Recent northern hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350–354.

    Article  CAS  Google Scholar 

  • Andreae, M. O., & Gelencsér, A. (2006). Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics, 6, 3131–3148.

    Article  CAS  Google Scholar 

  • Arnott, W. P., Moosmuller, H., Rogers, C. F., Jin, T., & Bruch, R. (1999). Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmospheric Environment, 33(17), 2845–2852.

    Article  CAS  Google Scholar 

  • Arnott, W. P., Moosmüller, H., & Walker, J. W. (2000). Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols. Review of Scientific Instruments, 71, 4545–4552.

    Article  CAS  Google Scholar 

  • Arnott, W. P., Hamasha, K., Moosmuller, H., Sheridan, P. J., & Ogren, J. A. (2005). Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Science & Technology, 39(1), 17–29.

    Article  CAS  Google Scholar 

  • Birch, M. E. (1998). Analysis of carbonaceous aerosols: interlaboratory comparison. Analyst, 123(5), 851–857.

    Article  CAS  Google Scholar 

  • Birch, M. E. (2002). Occupational monitoring of particulate diesel exhaust by NIOSH method 5040. Applied Occupational and Environmental Hygiene, 17(6), 400–405.

    Article  Google Scholar 

  • Birch, M. E., & Cary, R. A. (1996). Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: methodology and exposure issues. Analyst, 121, 1183–1190.

    Article  CAS  Google Scholar 

  • Biswas, S. K., Tarafdar, S. A., Islam, A., Khaliquzzaman, M., Tervahattu, H., & Kupiainen, K. (2003). Impact of unleaded gasoline introduction on the concentration of lead in the air of Dhaka, Bangladesh. Journal of Air & Waste Management Association, 53, 1355–1362.

    Article  CAS  Google Scholar 

  • Bond, T. C., & Bergstrom, R. W. (2006). Light absorption by carbonaceous particles: an investigative review. Aerosol Science and Technology, 40, 27–67.

    Article  CAS  Google Scholar 

  • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. (2013). Bounding the role of black carbon in the climate system: a scientific assessment. Journal of Geophysical Research. doi:10.1002/jgrd.50171.

    Google Scholar 

  • Castro, L. M., Pio, C. A., Harrison, R. M., & Smith, D. J. T. (1999). Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmospheric Environment, 33, 2771–2781.

    Article  CAS  Google Scholar 

  • Chang, D., Song, Y., & Liu, L. (2009). Visibility trends in six megacities in China 1973–2007. Atmospheric Environment, 94(2), 161–167.

    Google Scholar 

  • Che, H., Zhang, X., Li, Y., Zhou, Z., & Qu, J. J. (2007). Horizontal visibility trends in China 1981–2005. Geophysical Research letters, 34, L24706. doi:10.1029/2007GL031450.

    Article  Google Scholar 

  • Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., & Purcell, R. G. (1993). The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. air quality studies. Atmospheric Environment, 27A(8), 1185–1201.

    Article  CAS  Google Scholar 

  • Chow, J. C., Watson, J. G., Chen, L. W., Chang, M. C., Robinson, N. F., Trimble, D., et al. (2007). The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. Journal of Air & Waste Management Association, 57(9), 1014–1023.

    Article  CAS  Google Scholar 

  • Chow, J. C., Watson, J. G., Doraiswamy, P., Chen, L.-W. A., Sodeman, D. A., Lowenthal, D. H., et al. (2009). Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California. Atmopheric Research, 93(4), 874–887.

    Article  CAS  Google Scholar 

  • Coen, M. C., Weingartner, E., Apituley, A., Ceburnis, D., Flentje, H., Henzing, J. S., et al. (2010). Minimizing light absorption measurement artifacts of the aethalometer: evaluation of five correction algorithms. Atmospheric Measurement Techniques, 3, 457–474.

    Article  Google Scholar 

  • Conny, J. M., Klinedinst, D. B., Wight, S. A., & Paulsen, J. L. (2003). Optimizing thermal-optical methods for measuring atmospheric elemental (black) carbon: a response surface study. Aerosol Science & Technology, 37, 703–723.

    Article  CAS  Google Scholar 

  • Cyrys, J., Heinrich, J., Hoek, G., Meliefste, K., Lewne, M., Gehring, U., et al. (2003). Comparison between different traffic-related particle indicators: elemental carbon (EC), PM2.5 mass, and absorbance. Journal of Exposure Analysis and Environmental Epidemiology, 13, 134–143.

    Article  CAS  Google Scholar 

  • Deng, X., Tie, X., Wu, D., Zhou, X., Bi, X., Tan, H., et al. (2008). Long-term trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China. Atmospheric Environment, 42, 1424–1435.

    Article  CAS  Google Scholar 

  • Engling, G., & Gelencsér, A. (2010). Atmospheric particles: from local air pollution to climate change. Elements, 6(4), 223–222.

    Article  CAS  Google Scholar 

  • Feng, Y., Chen, Y., Guo, H., Zhi, G., Xiong, S., Li, J., et al. (2009). Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China. Atmospheric Research, 92(4), 434–442.

    Article  CAS  Google Scholar 

  • Gray, H. A., & Cass, G. R. (1998). Source contributions to atmospheric fine carbon particle concentrations. Atmospheric Environment, 32, 3805–3825.

    Article  CAS  Google Scholar 

  • Hansen, A. D. A., Rosen, H., & Novakov, T. (1984). The aethalometer—an instrument for the realtime measurement of optical absorption by aerosol particles. Science of Total Environment, 36, 191–196.

    Article  CAS  Google Scholar 

  • Huntzicker, J. J., Johnson, R. L., Shah, J. J., & Cary, R. A. (1982). Analysis of organic and elemental carbon in ambient aerosols by the thermal-optical method (Particulate carbon: atmospheric life cycle). New York: Plenum Press.

  • Jacobson, M. Z. (2000). A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols. Geophysical Research Letters, 27, 217–220. doi:10.1029/1999GL010968.

    Article  Google Scholar 

  • Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697.

    Article  CAS  Google Scholar 

  • Japar, S. M., Moore, J., Killinger, D. K., & Szkarlat, A. C. (1982). Spectrophone measurements of diesel vehicle particulate material. In H. E. Gerber & E. E. Hindman (Eds.), Light absorption by aerosol particles (pp. 275–278). Hampton: Spectrum Press.

    Google Scholar 

  • Jeong, C. H., Hopke, P. K., Kim, E., & Lee, D. W. (2004). The comparison between thermal-optical transmittance elemental carbon and aethalometer black carbon measured at multiple monitoring sites. Atmospheric Environment, 38, 5193–5204.

    Article  CAS  Google Scholar 

  • Johnson, R. L., & Huntzicker, J. J. (1979). Analysis of volatilizable and elemental carbon in ambient aerosols. In T. Novakov (Ed.), Carbonaceous particles in the atmosphere (pp. 10–13). Berkeley: Lawrence Berkeley Laboratory.

    Google Scholar 

  • Kaul, D. S., Gupta, T., Tripathi, S. N., Tare, V., & Collett, J. L. (2011). Secondary organic aerosol: a comparison between foggy and nonfoggy days. Environmental Science & Technology, 45(17), 7307–7313.

    Article  CAS  Google Scholar 

  • Keuken, M. P., Jonkers, S., Zandveld, P., Voogt, M., & van den Elshout, S. (2012). Elemental carbon as an indicator for evaluating the impact of traffic measures on air quality and health. Atmospheric Environment, 51, 1–8.

    Article  Google Scholar 

  • Lavanchy, V. M. H., Gäggeler, H. W., Nyeki, S., & Baltensperger, U. (1999). Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the highalpine research station Jungfraujoch. Atmospheric Environment, 33(17), 2759–2769.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, X., Gong, S., Che, H., Wang, D., Qu, W., et al. (2006). Comparison of EC and BC and evaluation of dust aerosol contribution to light absorption in Xi’an, China. Environmental Monitoring and Assessment, 120, 301–312.

    Article  CAS  Google Scholar 

  • Liu, D. Y., Wenzel, R. J., & Prather, K. A. (2003). Aerosol time-of-flight mass spectrometry during the Atlanta supersite experiment: 1. Measurements. Journal of Geophysical Research, 108. doi:10.1029/2001JD001562.

  • Mikhailov, E. F., Vlasenko, S. S., Podgorny, I. A., Ramanathan, V., & Corrigan, C. E. (2006). Optical properties of soot-water drop agglomerates: an experimental study. Journal of Geophysical Research, 111. doi:10.1029/2005JD006389.

  • Molnar, A., Meszaros, E., Hasson, H. C., Karlsson, G. A., Kiss, G. Y., & Krivacsy, Z. (1999). The importance of organic and elemental carbon in the fine atmospheric aerosol particles. Atmospheric Environment, 33, 2745–2750.

    Article  CAS  Google Scholar 

  • Nordmann, S., Birmili, W., Weinhold, K., Wiedensohler, A., Mertes, S., Müller, K., et al. (2009). Atmospheric aerosol measurements in the German Ultrafine Aerosol Network (GUAN), Part 2: comparison of measurements techniques for graphitic, lightabsorbing, and elemental carbon, and non-volatile particle volume under field conditions. Gefahrstoffe-Reinhaltung der Luft, 69, 469–474.

    Google Scholar 

  • Pavuluri, C. M., Kawamura, K., Aggarwal, S. G., & Swaminathan, T. (2011). Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical Indian aerosols. Atmospheric Chemistry and Physics, 11, 3937–3976.

    Article  Google Scholar 

  • Petzold, A., Kopp, C., & Niessner, R. (1997). The dependence of the specific attenuation cross-section on black carbon mass fraction and particle size. Atmopheric Environment, 31, 661–672.

    Article  CAS  Google Scholar 

  • Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1, 221–227.

    Article  CAS  Google Scholar 

  • Ramanathan, V., & Feng, Y. (2009). Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmospheric Environment, 43, 37–50.

    Article  CAS  Google Scholar 

  • Redemann, J., Russell, P. B., & Hamill, P. (2001). Dependence of aerosol light absorption and single-scattering albedo on ambient relative humidity for sulfate aerosols with black carbon cores. Journal of Geophysical Research, 106, 27485–27495.

    Article  CAS  Google Scholar 

  • Salako, G. O., Hopke, P. K., Cohen, D. D., Begum, B. A., Biswas, S. K., Pandit, G. G., et al. (2012). Exploring the variation between EC and BC in a variety of locations. Aerosol and Air Quality Research, 12, 1–7.

    CAS  Google Scholar 

  • Schmid, O., Artaxo, P., Arnott, W. P., Chand, D., Gatti, L. V., Frank, G. P., et al. (2006). Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: comparison and field calibration of absorption measurement techniques. Atmospheric Chemistry and Physics, 6, 3443–3462.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics: from air pollution to climate change. New York: Wiley.

    Google Scholar 

  • Stone, A. E., Schauer, J. J., Pradhan, B. B., Dangol, M. P., Habib, G., Venkataraman, C., et al. (2010). Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas. Journal of Geophysical Research, 115, 1–14.

    Google Scholar 

  • Sun, Y., Zhuang, G., Tang, A., Wang, Y., & An, Z. (2006). Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environmental Science & Technology, 40(10), 3148–2155.

    Article  CAS  Google Scholar 

  • Tan, J., Duan, J., He, K., Ma, Y., Duan, F., Chen, Y., et al. (2009). Chemical characteristics of PM2.5 during a typical haze episode in Guangzhou. Journal of Environmental Sciences, 21, 774–781.

    Article  CAS  Google Scholar 

  • Turco, R. P., Toon, O. B., Whitten, R. C., Pollack, J. B., & Hamill, P. (1983). The global cycle of particulate elemental carbon: a theoretical assessment. In H. R. Pruppacher (Ed.), Precipitation scavanging, dry deposition, and resuspension (pp. 1337–1351). New York: Elsevier Sci.

    Google Scholar 

  • Turpin, B. J., & Huntzicker, J. J. (1995). Identification of secondary aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment, 29, 3527–3544.

    Article  CAS  Google Scholar 

  • Turpin, B. J., Huntzicker, J. J., & Amams, K. M. (1990). Intercomparison of photoacoustic and thermal-optical methods for the measurement of atmospheric elemental carbon. Atmopheric Environment, Part A. General Topics, 24(7), 1831–1835.

    Article  Google Scholar 

  • Vignati, E., Karl, M., Krol, M., Wilson, J., Stier, P., & Cavalli, F. (2010). Sources of uncertainties in modelling black carbon at the global scale. Atmospheric Chemistry and Physics, 10, 2595–2611.

    Article  CAS  Google Scholar 

  • Watson, J. G., Chow, J. C., & Chen, L.-W. (2005). Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol and Air Quality Research, 5(1), 65–102.

    CAS  Google Scholar 

  • Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., & Baltensperger, U. (2003). Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. Journal of Aerosol Science, 34(10), 1445–1463.

    Article  CAS  Google Scholar 

  • Wolff, G. T. (1981). Particulate elemental carbon in the atmosphere. Journal of the Air Pollution Control Association, 31, 935–939.

    Article  Google Scholar 

  • Wu, D., Tie, X., Li, C., Ying, Z., Lau, A. K.-H., Huang, J., et al. (2005). An extremely low visibility event over the Guangzhou region: a case study. Atmospheric Environment, 39(35), 6568–6577.

    Article  CAS  Google Scholar 

  • Yang, F., Chen, H., Du, J., Yang, X., Gao, S., Chen, J., et al. (2011). Evolution of the mixing state of fine aerosols during haze events in Shanghai. Atmospheric Research, 104–105, 193–201.

    Google Scholar 

  • Zhi, G., Chen, Y., Feng, Y., Xiong, S., Li, J., Zhang, G., et al. (2008). Emission characteristics of carbonaceous particles from various residential coal-stoves in China. Environmental Science & Technology, 42(9), 3310–3315.

    Article  CAS  Google Scholar 

  • Zhi, G., Peng, C., Chen, Y., Liu, D., Sheng, G., & Fu, J. (2009). Deployment of coal-briquettes and improved stoves: possibly an option for both environment and climate. Environmental Science & Technology, 43(15), 5586–5591.

    Article  CAS  Google Scholar 

  • Zhi, G., Chen, Y., Sun, J., Chen, L., Tian, W., Duan, J., et al. (2011). Harmonizing aerosol carbon measurements between two conventional thermal/optical analysis methods. Environmental Science & Technology, 45(7), 2902–2908.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (41173121, 41373131) and the Special Sci-Tech Program on Environmental Protection for Public Welfare (201209007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, G., Chen, Y., Xue, Z. et al. Comparison of elemental and black carbon measurements during normal and heavy haze periods: implications for research. Environ Monit Assess 186, 6097–6106 (2014). https://doi.org/10.1007/s10661-014-3842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3842-2

Keywords

Navigation