Skip to main content
Log in

Assessing metal pollution in ponds constructed for controlling runoff from reclaimed coal mines

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Constructing ponds to protect downstream ecosystems is a common practice in opencast coal mine reclamation. As these ponds remain integrated in the landscape, it is important to evaluate the extent of the effect of mine pollution on these ecosystems. However, this point has not been sufficiently addressed in the literature. The main objective of this work was to explore the metal pollution in man-made ponds constructed for runoff control in reclaimed opencast coal mines over time. To do so, we evaluated the concentration of ten heavy metals in the water, sediment, and Typha sp. in 16 runoff ponds ranging from 1 to 19 years old that were constructed in reclaimed opencast coal mines of northeastern Spain. To evaluate degree of mining pollution, we compared these data to those from a pit lake created in a local unreclaimed mine and to local streams as an unpolluted reference, as well as comparing toxicity levels in aquatic organisms. The runoff ponds showed toxic concentrations of Al, Cu, and Ni in the water and As and Ni in the sediment, which were maintained over time. Metal concentrations in runoff ponds were higher than in local streams, and macrophytes showed high metal concentrations. Nevertheless, metal concentrations in water and sediment in runoff ponds were lower than those in the pit lake. This study highlights the importance of mining reclamation to preserve the health of aquatic ecosystems and suggests the existence of chronic metal toxicity in the ponds, potentially jeopardizing pond ecological functions and services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA, AWWA, WPCF (1992) Métodos normalizados para el análisis de aguas potables y residuales. Ediciones Díaz de Santos.

  • Babcock, M. F., Evans, D. W., & Alberts, J. J. (1983). Comparative uptake and translocation of trace elements from coal ash by typha latifolia. The Science of the Total Environment, 28, 203–214.

    Article  CAS  Google Scholar 

  • Bernhardt, E. S., & Palmer, M. A. (2011). The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians. Annals of the New York Academy of Sciences, 1223, 39–57. doi:10.1111/j.1749-6632.2011.05986.x.

    Article  Google Scholar 

  • Blodau, C. (2006). A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. The Science of the Total Environment, 369, 307–332. doi:10.1016/j.scitotenv.2006.05.004.

    Article  CAS  Google Scholar 

  • Braune, B., Muir, D., DeMarch, B., et al. (1999). Spatial and temporal trends of contaminants in Canadian Arctic freshwater and terrestrial ecosystems: a review. The Science of the Total Environment, 230, 145–207. doi:10.1016/S0048-9697(99)00038-8.

    Article  CAS  Google Scholar 

  • Brix, H., Dyhr-Jensen, K., & Lorenzen, B. (2002). Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate. Journal of Experimental Botany, 53, 2441–2450. doi:10.1093/jxb/erf106.

    Article  CAS  Google Scholar 

  • Bungart, R., & Hüttl, R. (2001). Production of biomass for energy in post-mining landscapes and nutrient dynamics. Biomass and Bioenergy, 20, 181–187. doi:10.1016/S0961-9534(00)00078-7.

    Article  CAS  Google Scholar 

  • Casas, J. M., Rosas, H., Sole, M., & Lao, C. (2003). Heavy metals and metalloids in sediments from the Llobregat basin, Spain. Environmental Geology, 44, 325–332.

    Article  CAS  Google Scholar 

  • Clements, W. H. (1994). Benthic invertebrate community responses to heavy metals in the Upper Arkansas River Basin, Colorado. J North Am Benthol Soc, 13, 30–44. doi:10.2307/1467263.

    Article  Google Scholar 

  • Clements, W. H., Vieira, N. K. M., & Church, S. E. (2010). Quantifying restoration success and recovery in a metal-polluted stream: a 17-year assessment of physicochemical and biological responses. Journal of Applied Ecology, 47, 899–910. doi:10.1111/j.1365-2664.2010.01838.x.

    Article  CAS  Google Scholar 

  • Cravotta, C. (2008). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations. Applied Geochemistry, 23, 166–202. doi:10.1016/j.apgeochem.2007.10.011.

    Article  CAS  Google Scholar 

  • Croteau, M. N., Luoma, S. N., & Stewart, A. R. (2005). Trophic transfer of metals along freshwater food webs: evidence of cadmium biomagnification in nature. Limnology and Oceanography, 50, 1511–1519. doi:10.2307/3597695.

    Article  CAS  Google Scholar 

  • David, C. P. C. (2003). Establishing the impact of acid mine drainage through metal bioaccumulation and taxa richness of benthic insects in a tropical Asian stream (the Philippines). Environmental Toxicology and Chemistry, 22, 2952–2959. doi:10.1897/02-529.

    Article  CAS  Google Scholar 

  • Davidson, C. M., Thomas, R. P., McVey, S. E., et al. (1994). Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Analytica Chimica Acta, 291, 277–286.

    Article  CAS  Google Scholar 

  • Demirezen, D., & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56, 685–696. doi:10.1016/j.chemosphere.2004.04.011.

    Article  CAS  Google Scholar 

  • Dorgelo, J., Meester, H., & van Velzen, C. (1995). Effects of diet and heavy metals on growth rate and fertility in the deposit-feeding snail Potamopyrgus jenkinsi (Smith) (Gastropoda: Hydrobiidae). Hydrobiologia, 316, 199–210. doi:10.1007/BF00017437.

    Article  CAS  Google Scholar 

  • Dubé, M. G., MacLatchy, D. L., Kieffer, J. D., et al. (2005). Effects of metal mining effluent on Atlantic salmon (Salmo salar) and slimy sculpin (Cottus cognatus): using artificial streams to assess existing effects and predict future consequences. The Science of the Total Environment, 343, 135–154. doi:10.1016/j.scitotenv.2004.09.037.

    Article  Google Scholar 

  • Dunbabin, J. S., & Bowmer, K. H. (1992). Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. The Science of the Total Environment, 111, 151–168. doi:10.1016/0048-9697(92)90353-T.

    Article  CAS  Google Scholar 

  • Förstner, U., & Wittmann, G. T. W. (1983). Metal pollution in the aquatic environment. Netherlands: Springer.

    Google Scholar 

  • Gambrell, R. (1994). Trace and toxic metals in wetlands—a review. Journal of Environmental Quality, 23, 883–891.

    Article  CAS  Google Scholar 

  • Gould, S. F. (2012). Comparison of post-mining rehabilitation with reference ecosystems in monsoonal eucalypt woodlands, northern Australia. Restoration Ecology, 20, 250–259. doi:10.1111/j.1526-100X.2010.00757.x.

    Article  Google Scholar 

  • Griffith, M. B., Norton, S. B., Alexander, L. C., et al. (2012). The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: a review. The Science of the Total Environment, 417–418, 1–12. doi:10.1016/j.scitotenv.2011.12.042.

    Article  Google Scholar 

  • Hart, T. M., & Davis, S. E. (2011). Wetland development in a previously mined landscape of East Texas, USA. Wetlands Ecology and Management, 19, 317–329. doi:10.1007/s11273-011-9218-2.

    Article  CAS  Google Scholar 

  • Hartman, K. J., Kaller, M. D., Howell, J. W., & Sweka, J. A. (2005). How much do valley fills influence headwater streams? Hydrobiologia, 532, 91–102. doi:10.1007/s10750-004-9019-1.

    Article  CAS  Google Scholar 

  • Hobbs, R. J., & Norton, D. A. (1996). Towards a conceptual framework for restoration ecology. Restoration Ecology, 4, 93–110. doi:10.1111/j.1526-100X.1996.tb00112.x.

    Article  Google Scholar 

  • Hollander, M., & Wolfe, D. A. (1973). Nonparametric statistical methods. New York: John Wiley & Sons.

    Google Scholar 

  • Hopkins, R. L., Altier, B. M., Haselman, D., et al. (2013). Exploring the legacy effects of surface coal mining on stream chemistry. Hydrobiologia, 713, 87–95. doi:10.1007/s10750-013-1494-9.

    Article  CAS  Google Scholar 

  • Johnson, D. B. (2003). Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Pollut Focus, 3, 47–66.

    Article  CAS  Google Scholar 

  • Lindberg, T. T., Bernhardt, E. S., Bier, R., et al. (2011). Cumulative impacts of mountaintop mining on an Appalachian watershed. Proceedings of the National Academy of Sciences, 108, 20929–20934. doi:10.1073/pnas.1112381108.

    Article  CAS  Google Scholar 

  • Loayza-Muro, R. A., Elías-Letts, R., Marticorena-Ruíz, J. K., et al. (2010). Metal-induced shifts in benthic macroinvertebrate community composition in Andean high altitude streams. Environmental Toxicology and Chemistry, 29, 2761–2768. doi:10.1002/etc.327.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    Article  CAS  Google Scholar 

  • Majer, & Nichols. (1998). Long-term recolonization patterns of ants in Western Australian rehabilitated bauxite mines with reference to their use as indicators of restoration success. Journal of Applied Ecology, 35, 161–182. doi:10.1046/j.1365-2664.1998.00286.x.

    Article  Google Scholar 

  • Markert, B. (1992). Presence and significance of naturally-occurring chemical-elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio, 103, 1–30.

    Google Scholar 

  • McNaughton, S. J., Folsom, T. C., Lee, T., et al. (1974). Heavy metal tolerance in Typha latifolia without the evolution of tolerant races. Ecology, 55, 1163–1165.

    Article  CAS  Google Scholar 

  • Meeravali, N. N., & Kumar, S. J. (2000). Comparison of open microwave digestion and digestion by conventional heating for the determination of Cd, Cr, Cu and Pb in algae using transverse heated electrothermal atomic absorption spectrometry. Fresenius' Journal of Analytical Chemistry, 366, 313–315. doi:10.1007/s002160050061.

    Article  CAS  Google Scholar 

  • Merricks, T. C., Cherry, D. S., Zipper, C. E., et al. (2007). Coal-mine hollow fill and settling pond influences on headwater streams in southern West Virginia, USA. Environmental Monitoring and Assessment, 129, 359–378.

    Article  CAS  Google Scholar 

  • Meyer, C. K., Baer, S. G., & Whiles, M. R. (2008). Ecosystem recovery across a chronosequence of restored wetlands in the Platte River Valley. Ecosystems, 11, 193–208. doi:10.1007/s10021-007-9115-y.

    Article  CAS  Google Scholar 

  • Miguel-Chinchilla L (2013) Physicochemical and macroinvertebrate community trends in manmade ponds constructed in reclaimed opencast coal mines. Universidad de Alcalá.

  • Miguel-Chinchilla L, Boix D, Gascón S, Comín FA (2014) Macroinvertebrate biodiversity patterns during primary succession in manmade ponds in north-eastern Spain. J. Limnol. 73

  • Mitsch, W. J., & Gosselink, J. G. (2000). Wetlands (3rd ed.). New York: Wiley.

    Google Scholar 

  • Mitsch, W. J., & Wise, K. M. (1998). Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Water Research, 32, 1888–1900. doi:10.1016/S0043-1354(97)00401-6.

    Article  CAS  Google Scholar 

  • Nadkarni, R. A. (1984). Applications of microwave oven sample dissolution in analysis. Analytical Chemistry, 56, 2233–2237. doi:10.1021/ac00276a056.

    Article  CAS  Google Scholar 

  • Nicolau, J. M. (2003). Trends in relief design and construction in opencast mining reclamation. Land Degradation and Development, 14, 215–226.

    Article  Google Scholar 

  • Palmer, M., Bernhardt, E., Schlesinger, W., et al. (2010). Mountaintop mining consequences. Science, 327, 148–149. doi:10.1126/science.1180543.

    Article  CAS  Google Scholar 

  • Parker, G. H. (2004). Tissue metal levels in Muskrat (Ondatra zibethica) collected near the Sudbury (Ontario) ore-smelters; prospects for biomonitoring marsh pollution. Environmental Pollution, 129, 23–30. doi:10.1016/j.envpol.2003.10.003.

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, et al. (2012) nlme: linear and nonlinear mixed effects models. R Package Version 31-111

  • Pond, G. J., Passmore, M. E., Borsuk, F. A., et al. (2008). Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. J North Am Benthol Soc, 27, 717–737. doi:10.1899/08-015.1.

    Article  Google Scholar 

  • Pueyo, M., Rauret, G., Luck, D., et al. (2001). Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure. Journal of Environmental Monitoring, 3, 243–250.

    Article  CAS  Google Scholar 

  • R Core Team. (2012). R: a language and environment for statistical computing. Vienna: R foundation for Statistical Computing. R Foundation for Statistical Computing.

    Google Scholar 

  • Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46, 449–455.

    Article  CAS  Google Scholar 

  • Rodrigue, J. A., Burger, J. A., & Oderwald, R. G. (2002). Forest productivity and commercial value of pre-law reclaimed mined land in the eastern United States. Northern Journal of Applied Forestry, 19, 106–114.

    Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. The Science of the Total Environment, 281, 87–98.

    Article  CAS  Google Scholar 

  • Sasmaz, A., Obek, E., & Hasar, H. (2008). The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecological Engineering, 33, 278–284.

    Article  Google Scholar 

  • Sastre, J., Sahuquillo, A., Vidal, M., & Rauret, G. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462, 59–72. doi:10.1016/S0003-2670(02)00307-0.

    Article  CAS  Google Scholar 

  • Sawtsky L, McKenna G, Keys MJ, Long D (2000) Towards minimising the long-term liability of reclaimed mine sites. In: Haigh MJ (ed) Reclaimed Land Eros. Control Soils Ecol. Taylor & Francis, pp 21–36.

  • Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19, 105–116. doi:10.1016/j.mineng.2005.08.006.

    Article  CAS  Google Scholar 

  • Shrestha, R. K., & Lal, R. (2006). Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil. Environment International, 32, 781–796.

    Article  CAS  Google Scholar 

  • Smith, F. E., & Arsenault, E. A. (1996). Microwave-assisted sample preparation in analytical chemistry. Talanta, 43, 1207–1268. doi:10.1016/0039-9140(96)01882-6.

    Article  CAS  Google Scholar 

  • US EPA. (2002). National Recommended Water Quality Criteria: 2002. Office of Water, EPA-822-R-02-047. Washinton, DC: United States Environmental Protection Agency. Accessed 23 Jun 2013.

    Google Scholar 

  • Vickers, H., Gillespie, M., & Gravina, A. (2012). Assessing the development of rehabilitated grasslands on post-mined landforms in north west Queensland, Australia. Agriculture, Ecosystems and Environment, 163, 72–84. doi:10.1016/j.agee.2012.05.024.

    Article  Google Scholar 

  • Walker, L. R., Wardle, D. A., Bardgett, R. D., & Clarkson, B. D. (2010). The use of chronosequences in studies of ecological succession and soil development. Journal of Ecology, 98, 725–736. doi:10.1111/j.1365-2745.2010.01664.x.

    Article  Google Scholar 

  • Wei, X., Wei, H., & Viadero, R. C., Jr. (2011). Post-reclamation water quality trend in a Mid-Appalachian watershed of abandoned mine lands. The Science of the Total Environment, 409, 941–948. doi:10.1016/j.scitotenv.2010.11.030.

    Article  CAS  Google Scholar 

  • Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30, 685–700.

    Article  CAS  Google Scholar 

  • Witeska, M., Sarnowski, P., Ługowska, K., & Kowal, E. (2013). The effects of cadmium and copper on embryonic and larval development of ide Leuciscus idus L. Fish Physiol Biochem Adv Online Publ. doi:10.1007/s10695-013-9832-4.

    Google Scholar 

  • Wong, M. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780. doi:10.1016/S0045-6535(02)00232-1.

    Article  CAS  Google Scholar 

  • Ye, Z. H., Lin, Z. Q., Whiting, S. N., et al. (2003). Possible use of constructed wetland to remove selenocyanate, arsenic, and boron from electric utility wastewater. Chemosphere, 52, 1571–1579. doi:10.1016/S0045-6535(03)00497-1.

    Article  CAS  Google Scholar 

  • Younger, P. L. (2001). Mine water pollution in Scotland: nature, extent and preventative strategies. The Science of the Total Environment, 265, 309–326. doi:10.1016/S0048-9697(00)00673-2.

    Article  CAS  Google Scholar 

  • Yucel, D. S., & Baba, A. (2012). Geochemical characterization of acid mine lakes in northwest Turkey and their effect on the environment. Archives of Environmental Contamination and Toxicology, 64, 357–376. doi:10.1007/s00244-012-9843-7.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a research and assistance agreement between Endesa Foundation and the Pyrenean Institute of Ecology-CSIC. The regional government of Aragón, Spain supported the PhD studies of the first author. We are grateful to our fieldwork assistants as well as the Endesa S.A. and their employees in the Teruel mines. Finally, we would like to thank the anonymous reviewers for their helpful comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Miguel-Chinchilla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miguel-Chinchilla, L., González, E. & Comín, F.A. Assessing metal pollution in ponds constructed for controlling runoff from reclaimed coal mines. Environ Monit Assess 186, 5247–5259 (2014). https://doi.org/10.1007/s10661-014-3774-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3774-x

Keywords

Navigation