Skip to main content
Log in

Evaluation of a combined macrophyte–epiphyte bioassay for assessing nutrient enrichment in the Portneuf River, Idaho, USA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We describe and evaluate a laboratory bioassay that uses Lemna minor L. and attached epiphytes to characterize the status of ambient and nutrient-enriched water from the Portneuf River, Idaho. Specifically, we measured morphological (number of fronds, longest surface axis, and root length) and population-level (number of plants and dry mass) responses of L. minor and community-level (ash-free dry mass [AFDM] and chlorophyll a [Chl a]) responses of epiphytes to nutrient enrichment. Overall, measures of macrophyte biomass and abundance increased with increasing concentrations of dissolved phosphorus (P) and responded more predictably to nutrient enrichment than morphological measures. Epiphyte AFDM and Chl a were also greatest in P-enriched water; enrichments of N alone produced no measurable epiphytic response. The epiphyte biomass response did not directly mirror macrophyte biomass responses, illustrating the value of a combined macrophyte–epiphyte assay to more fully evaluate nutrient management strategies. Finally, the most P-enriched waters not only supported greater standing stocks of macrophyte and epiphytes but also had significantly higher water column dissolved oxygen and dissolved organic carbon concentrations and a lower pH. Advantages of this macrophyte–epiphyte bioassay over more traditional single-species assays include the use of a more realistic level of biological organization, a relatively short assay schedule (~10 days), and the inclusion of multiple biological response and water-quality measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan, J. D., & Castillo, M. M. (2007). Stream ecology: Structure and function of running waters. The Netherlands: Springer.

    Book  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington DC: American Public Health Association, American Water Works Association, and Water Environment Federation.

    Google Scholar 

  • Baker, J. H., & Orr, D. R. (1986). Distribution of epiphytic bacteria on freshwater plants. Journal of Ecology, 74, 155–165.

    Article  Google Scholar 

  • Baker, J. H., & Farr, I. S. (1987). Importance of dissolved organic matter produced by duckweed (Lemna minor) in a Southern English river. Freshwater Biology, 17, 325–330.

    Article  Google Scholar 

  • Beardall, J., Young, E., & Roberts, S. (2001). Approaches for determining phytoplankton nutrient limitation. Aquatic Sciences, 63, 44–69.

    Article  CAS  Google Scholar 

  • Bechtold, H. A., Marcarelli, A. M., Baxter, C. V., & Inouye, R. S. (2012). Effects of N, P, and organic carbon on stream biofilm nutrient limitation and uptake in a semi-arid watershed. Limnology and Oceanography, 57, 1544–1554.

    Article  CAS  Google Scholar 

  • Carpenter, S. R. (1996). Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology, 77, 677–680.

    Article  Google Scholar 

  • Carpenter, S. R., & Lodge, D. M. (1986). Effects of submersed macrophytes on ecosystem processes. Aquatic Botany, 26, 341–370.

    Article  Google Scholar 

  • Carr, G. M., & Chambers, P. A. (1998). Macrophyte growth and sediment phosphorus and nitrogen in a Canadian Prairie river. Freshwater Biology, 39, 525–536.

    Article  CAS  Google Scholar 

  • Clarke, S. J. (2002). Vegetation growth in rivers: Influences upon sediment and nutrient dynamics. Progress in Physical Geography, 26, 159–172.

    Article  Google Scholar 

  • Drenner, R. W., Mazumder, A., Carpenter, S. R., & Huston, M. A. (1999). Microcosm experiments have limited relevance for community and ecosystem ecology: Comments and reply. Ecology, 80, 1081–1089.

    Article  Google Scholar 

  • Eriksson, P. G., & Weisner, S. E. B. (1999). An experimental study on the effects of submerged macrophytes on nitrification and denitrification in ammonium-rich aquatic ecosystems. Limnology and Oceanography, 44, 1993–1999.

    Article  CAS  Google Scholar 

  • Fitzgerald, G. P. (1969). Some factors in the competition or antagonism among bacteria, algae and aquatic weeds. Journal of Phycology, 5, 351–359.

    Article  Google Scholar 

  • Güsewell, S., & Koerselman, W. (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, 5, 37–61.

    Article  Google Scholar 

  • Hilton, J., O’Hare, M. T., Bowes, M. J., & Jones, J. I. (2006). How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment, 365, 66–83.

    Article  CAS  Google Scholar 

  • Hooper, F. F. (1969). Eutrophication indices and their relation to other indices of ecosystem change. In Review of eutrophication: Causes, consequences, correctives. Proceedings from a Symposium (pp. 225–235). Washington DC: National Academy of Sciences Publication 1700.

    Google Scholar 

  • Hopkins, J. M., Marcarelli, A. M., & Bechtold, H. A. (2011). Ecosystem structure and function are complementary measures of water quality in a polluted, spring-influenced river. Water, Air, & Soil Pollution, 214, 409–421.

    Article  CAS  Google Scholar 

  • Les, D. H., Crawford, D. J., Landolt, E., Gabel, J. D., & Kimball, R. T. (2002). Phylogeny and systematics of Lemnaceae, the duckweed family. Systematic Botany, 27, 221–240.

    Google Scholar 

  • Lin, H.-J., Nixon, S. W., Taylor, D. I., Granger, S. L., & Buckley, B. A. (1996). Responses of epiphytes on eel grass, Zostera marina L., to separate and combined nitrogen and phosphorus enrichment. Aquatic Botany, 52, 243–258.

    Article  Google Scholar 

  • Linton, S., & Goulder, R. (1998). The duckweed Lemna minor compared with the algal Selensastrum capricornutum for bioassay of pond-water richness. Aquatic Botany, 60, 27–36.

    Article  CAS  Google Scholar 

  • Madsen, J. D., & Adams, M. S. (1988). The seasonal biomass and productivity of the submerged macrophytes in a polluted Wisconsin stream. Freshwater Biology, 20, 41–50.

    Article  Google Scholar 

  • Marcarelli, A. M., & Wurtsbaugh, W. A. (2009). Nitrogen fixation varies spatially and seasonally in linked stream-lake ecosystems. Biogeochemistry, 94, 95–110.

    Article  CAS  Google Scholar 

  • Marcarelli, A. M., Rugenski, A. T., Bechtold, H. A., & Inouye, R. S. (2009). Nutrient limitation of biofilm biomass and metabolism in the Upper Snake River basin, southeast Idaho, USA. Hydrobiologia, 620, 63–76.

    Article  CAS  Google Scholar 

  • Mebane, C. A., Simon, N. S., & Maret, T. R. (2013). Linking nutrient enrichment and streamflow to macrophytes in agricultural streams. Hydrobiologia, 722, 143–158. doi:10.1007/s10750-013-1693-4.

    Article  Google Scholar 

  • Miller, W. E, Greene, J. C., & Shiroyama, T. (1978). The Selenastrum capricornutum Printz algal assay bottle test. Experimental design, application and data interpretation protocol. U.S. Environmental Protection Agency, EPA-600/9-78-018.

  • Millican, J. S., Back, J. A., & McFarland, A. M. S. (2008). Nutrient bioassays of growth parameters for algae in the North Bosque River of Central Texas. Journal of the American Water Resources Association, 44, 1219–1230.

    Article  CAS  Google Scholar 

  • Minshall, G. W., & Andrews, D. A. (1973). An ecological investigation of the Portneuf River, Idaho: A semiarid-land stream subjected to pollution. Freshwater Biology, 3, 1–30.

    Article  Google Scholar 

  • Mkandawire, M., Taubert, B., & Dudel, E. G. (2006). Limitation of growth-parameters in Lemna gibba bioassays for arsenic and uranium under variable phosphate availability. Ecotoxicology and Environmental Safety, 65, 118–128.

    Article  CAS  Google Scholar 

  • Mkandawire, M., Teixeira da Silva, J. A., & Dudel, E. G. (2013). The Lemna bioassay: contemporary issues as the most standardized plant bioassay for aquatic ecotoxicology. Critical Reviews in Environmental Science and Technology, 44, 154–197. doi:10.1080/10643389.2012.710451.

    Article  Google Scholar 

  • Neckles, H. A., Wetzel, R. L., & Orth, R. J. (1993). Relative effects of nutrient enrichment and grazing on epiphyte–macrophyte (Zostera marina L.) dynamics. Oecologia, 93, 285–295.

    Article  Google Scholar 

  • Onaindia, M., Amexaga, I., Garbisu, C., & García-Bikuña, B. (2005). Aquatic macrophytes as biological indicators of environmental conditions of rivers in North-Eastern Spain. Annales de Limnologie – International Journal of Limnology, 41, 175–182.

    Article  Google Scholar 

  • Pelton, D. K., Levine, S. N., & Braner, M. (1998). Measurements of phosphorus uptake by macrophytes and epiphytes from the LaPlatte River (VT) using 32P in stream microcosms. Freshwater Biology, 39, 285–299.

    Article  Google Scholar 

  • Penning, W. E., Mjelde, M., Dudley, B., Hellsten, S., Hanganu, J., Kolada, et al. (2008). Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquatic Ecology, 42, 237–251.

    Article  CAS  Google Scholar 

  • R Development Core Team. (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.r-project.org. Accessed 14 March 2012.

  • Radić, S., Stipaničev, D., Cvjetko, P., Marijanović Rajčić, M., Širac, S., Pevalek-Kozlina, et al. (2011). Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicology and Environmental Safety, 74, 182–187.

    Article  Google Scholar 

  • Ramsey, F. L., & Schafer, D. W. (2002). The statistical sleuth. A course in methods of data analysis. Pacific Grove: Duxbury Press.

    Google Scholar 

  • Ray, A. M. (2010). Portneuf River total maximum daily load revision and addendum. Idaho Department of Environmental Quality. http://www.epa.gov/waters/tmdldocs/portneuf_river_revision_addendum_final.pdf. Accessed 3 October 2013.

  • Sand-Jensen, K., & Borum, J. (1991). Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany, 41, 137–175.

    Article  Google Scholar 

  • Santamaría, L. (2002). Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica, 23, 137–154.

    Article  Google Scholar 

  • Schindler, D. W. (1998). Replication versus realism: The need for ecosystem-scale experiments. Ecosystems, 1, 323–334.

    Article  Google Scholar 

  • Sengupta, S., Medda, C., & Dewanji, A. (2010). The impact of duckweed on water quality in sub-tropical ponds. Environmentalist, 30, 353–360.

    Article  Google Scholar 

  • Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100, 179–196.

    Article  CAS  Google Scholar 

  • Soranno, P. A., Cheruvelil, K. S., Stevenson, R. J., Rollins, S. L., Holden, S. W., Heaton, S., et al. (2008). A framework for developing ecosystem-specific nutrient criteria: Integrating biological thresholds in predictive modeling. Limnology and Oceanography, 53, 773–787.

    Article  Google Scholar 

  • Spivak, A. C., Vanni, M. J., & Mette, E. M. (2011). Moving on up: Can results from simple aquatic mesocosm experiments be applied across broad spatial scales? Freshwater Biology, 56, 279–291.

    Article  Google Scholar 

  • Szabó, S., Braun, M., & Borics, G. (1999). Elemental flux between algae and duckweeds (Lemna gibba) during competition. Archiv für Hydrobiologie, 146, 355–367.

    Google Scholar 

  • Taraldsen, J. E., & Norberg-King, T. J. (1990). New method for determining effluent toxicity using duckweed (Lemna minor). Environmental Toxicology and Chemistry, 9, 761–767.

    Article  CAS  Google Scholar 

  • Underwood, A. J. (1995). Toxicological testing in laboratories is not ecological testing of toxicology. Human and Ecological Risk Assessment, 1, 178–182.

    Article  Google Scholar 

  • USEPA. (2000). Nutrient criteria technical guidance manual: Rivers and streams. U.S. Environmental Protection Agency, EPA-822-B-00-002. http://www.epa.gov/waterscience/criteria/nutrient/guidance/rivers/index.html. Accessed 3 October 2013.

  • USEPA. (2013). National summary of impaired waters and TMDL information. U.S. Environmental Protection Agency. http://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T. Accessed 3 October 2013.

  • Vadeboncoeur, Y., Vander Zanden, M. J., & Lodge, D. M. (2002). Putting the lake back together: Reintegrating benthic pathways into lake food web models. Bioscience, 52, 44–54.

    Article  Google Scholar 

  • Wang, W. C. (1990). Literature review on duckweed toxicity testing. Environmental Research, 52, 7–22.

    Article  CAS  Google Scholar 

  • Wang, W. C., & Freemark, K. (1995). The use of plants for environmental monitoring and assessment. Ecotoxicology and Environmental Safety, 30, 289–301.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. (2001). Limnology: Lake and river ecosystems. San Diego: Academic Press.

    Google Scholar 

  • Williams, S. L., & Ruckleshaus, M. H. (1993). Effects of nitrogen availability and herbivory on eelgrass (Zostera marina) and epiphytes. Ecology, 74, 904–918.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation Undergraduate Mentoring in Environmental Biology program (UMEB 03-05289), the NSF-Idaho EPSCoR program (EPS 04-47689), the Inland Northwest Research Alliance (Department of Energy Contract #DE-FG02-05ER64132), the Center for Ecological Research and Education and the Stream Ecology Center at Idaho State University, and the Idaho Department of Environmental Quality. Field and laboratory support was also provided by the City of Pocatello, the Idaho Association of Soil Conservation Districts, and Three Rivers RC&D. The authors would also like to thank Kelsey Flandro, Stacey Raben, Jennifer Cornell, Heather Bechtold, and Colin Warnock for field and laboratory assistance. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Ray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 67 kb)

Appendix

Appendix

Table 3 Comparison of test conditions used with field-harvested Lemna minor to characterize the effects of nutrient enrichment on primary production with commonly used methods for testing toxicity with duckweed

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, A.M., Mebane, C.A., Raben, F. et al. Evaluation of a combined macrophyte–epiphyte bioassay for assessing nutrient enrichment in the Portneuf River, Idaho, USA. Environ Monit Assess 186, 4081–4096 (2014). https://doi.org/10.1007/s10661-014-3682-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3682-0

Keywords

Navigation