Environmental Monitoring and Assessment

, Volume 186, Issue 2, pp 919–934

Evaluation of wireless sensor networks (WSNs) for remote wetland monitoring: design and initial results

  • Carl J. Watras
  • Michael Morrow
  • Ken Morrison
  • Sean Scannell
  • Steve Yaziciaglu
  • Jordan S. Read
  • Yu-Hen Hu
  • Paul C. Hanson
  • Tim Kratz
Article

DOI: 10.1007/s10661-013-3424-8

Cite this article as:
Watras, C.J., Morrow, M., Morrison, K. et al. Environ Monit Assess (2014) 186: 919. doi:10.1007/s10661-013-3424-8

Abstract

Here, we describe and evaluate two low-power wireless sensor networks (WSNs) designed to remotely monitor wetland hydrochemical dynamics over time scales ranging from minutes to decades. Each WSN (one student-built and one commercial) has multiple nodes to monitor water level, precipitation, evapotranspiration, temperature, and major solutes at user-defined time intervals. Both WSNs can be configured to report data in near real time via the internet. Based on deployments in two isolated wetlands, we report highly resolved water budgets, transient reversals of flow path, rates of transpiration from peatlands and the dynamics of chromophoric-dissolved organic matter and bulk ionic solutes (specific conductivity)—all on daily or subdaily time scales. Initial results indicate that direct precipitation and evapotranspiration dominate the hydrologic budget of both study wetlands, despite their relatively flat geomorphology and proximity to elevated uplands. Rates of transpiration from peatland sites were typically greater than evaporation from open waters but were more challenging to integrate spatially. Due to the high specific yield of peat, the hydrologic gradient between peatland and open water varied with precipitation events and intervening periods of dry out. The resultant flow path reversals implied that the flux of solutes across the riparian boundary varied over daily time scales. We conclude that WSNs can be deployed in remote wetland-dominated ecosystems at relatively low cost to assess the hydrochemical impacts of weather, climate, and other perturbations.

Keywords

Wireless sensor networks Ecosystem observatories Wetlands Dissolved organic carbon Climate change 

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Carl J. Watras
    • 1
    • 2
  • Michael Morrow
    • 3
  • Ken Morrison
    • 1
    • 2
  • Sean Scannell
    • 3
  • Steve Yaziciaglu
    • 3
  • Jordan S. Read
    • 4
    • 5
  • Yu-Hen Hu
    • 3
  • Paul C. Hanson
    • 2
  • Tim Kratz
    • 2
  1. 1.Wisconsin Department of Natural ResourcesUW-Trout Lake Research StationBoulder JunctionUSA
  2. 2.Center for LimnologyUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Department of Civil and Environmental EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  5. 5.Center for Integrated Data AnalyticsU.S. Geological SurveyMiddletonUSA