Skip to main content
Log in

Ecosystem classifications based on summer and winter conditions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated relative to a particular application prior to their implementation as monitoring and assessment frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ANOSIM:

Analysis of similarity

DHI:

Dynamic habitat index

fPAR:

Fraction of absorbed photosynthetically active radiation

MODIS:

Moderate-resolution imaging spectrometer

SSM/I:

Special sensor microwave/imager

SWE:

Snow water equivalent

References

  • Andrew, M. E., Wulder, M. A., & Coops, N. C. (2011). How do butterflies define ecosystems? A comparison of ecological regionalization schemes. Biological Conservation, 144, 1409–1418.

    Article  Google Scholar 

  • Angert, A., Biraud, S., Bonfils, C., Henning, C. C., Buermann, W., Pinzon, J., et al. (2005). Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proceedings of the National Academy of Sciences of the United States of America, 102, 10823–10827.

    Article  CAS  Google Scholar 

  • Bailey, R. G. (1995). Description of the ecoregions of the United States, 2nd edn. US Department of Agriculture, Forest Service, Miscellaneous Publication 1391.

  • Bailey, R. G. (2004). Identifying ecoregion boundaries. Environmental Management, 34, S14–S26.

    Article  Google Scholar 

  • Bailey, R. G., Pfister, R. D., & Henderson, J. A. (1978). Nature of land and resource classification—review. Journal of Forestry, 76, 650–655.

    Google Scholar 

  • Bailey, R. G., Zoltai, S. C., & Wiken, E. B. (1985). Ecological regionalization in Canada and the United States. Geoforum, 16, 265–275.

    Article  Google Scholar 

  • Baker, W. L., & Weisberg, P. J. (1997). Using GIS to model tree population parameters in the Rocky Mountain National Park forest–tundra ecotone. Journal of Biogeography, 24, 513–526.

    Article  Google Scholar 

  • Banner, A., Meidinger, D. V., Lea, E. C., Maxwell, R. E., & Von Sacken, B. C. (1996). Ecosystem mapping methods for British Columbia. Environmental Monitoring and Assessment, 39, 97–117.

    Article  Google Scholar 

  • Barton, J. L., & Metzeling, L. (2004). The development of biological objectives for streams in a single catchment: a case study on the Catchment of Western Port Bay, Victoria, Australia. Environmental Monitoring and Assessment, 95, 239–256.

    Article  Google Scholar 

  • Beauchesne, P., Ducruc, J. P., & Gerardin, V. (1996). Ecological mapping: a framework for delimiting forest management units. Environmental Monitoring and Assessment, 39, 173–186.

    Article  Google Scholar 

  • Brown, R. D. (2000). Northern hemisphere snow cover variability and change, 1915-97. Journal of Climate, 13, 2339–2355.

    Article  Google Scholar 

  • Brown, R. D., & Braaten, R. O. (1998). Spatial and temporal variability of Canadian monthly snow depths, 1946-1995. Atmosphere-Ocean, 36, 37–54.

    Article  Google Scholar 

  • Bunn, A. G., & Goetz, S. J. (2006). Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: the influence of seasonality, cover type, and vegetation density. Earth Interactions, 10, 12.

    Article  Google Scholar 

  • Carmean, W. H. (1996). Forest site-quality estimation using forest ecosystem classification in northwestern Ontario. Environmental Monitoring and Assessment, 39, 493–508.

    Article  Google Scholar 

  • Castilla, G., Larkin, K., Linke, J., & Hay, G. J. (2009). The impact of thematic resolution on the patch-mosaic model of natural landscapes. Landscape Ecology, 24, 15–23.

    Article  Google Scholar 

  • Cheruvelil, K. S., Soranno, P. A., Bremigan, M. T., Wagner, T., & Martin, S. L. (2008). Grouping lakes for water quality assessment and monitoring: the roles of regionalization and spatial scale. Environmental Management, 41, 425–440.

    Article  Google Scholar 

  • Clarke, K. R. (1993). Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143.

    Article  Google Scholar 

  • Commission for Environmental Cooperation. (1997). Ecological regions of North America: toward a common perspective. Montreal: Commission for Environmental Cooperation.

    Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.

    Article  Google Scholar 

  • Convention on Biological Diversity. (2004). Decisions adopted by the conference of the parties to the convention on biological diversity at its seventh meeting. Montreal: Convention on Biological Diversity.

    Google Scholar 

  • Coops, N. C., Wulder, M. A., Duro, D. C., Han, T., & Berry, S. (2008). The development of a Canadian dynamic habitat index using multi-temporal satellite estimates of canopy light absorbance. Ecological Indicators, 8, 754–766.

    Article  Google Scholar 

  • Coops, N. C., Wulder, M. A., & Iwanicka, D. (2009). An environmental domain classification of Canada using earth observation data for biodiversity assessment. Ecological Informatics, 4, 8–22.

    Article  Google Scholar 

  • Cushman, S. A., McGarigal, K., & Neel, M. C. (2008). Parsimony in landscape metrics: strength, universality, and consistency. Ecological Indicators, 8, 691–703.

    Article  Google Scholar 

  • Dark, S. J., & Bram, D. (2007). The modifiable areal unit problem (MAUP) in physical geography. Progress in Physical Geography, 31, 471–479.

    Article  Google Scholar 

  • Derksen, C., Wulder, M., Ledrew, E., & Goodison, B. (1998). Associations between spatially autocorrelated patterns of SSM/I-derived prairie snow cover and atmospheric circulation. Hydrological Processes, 12, 2307–2316.

    Article  Google Scholar 

  • Derksen, C., Walker, A., & Goodison, B. (2005). Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada. Remote Sensing of Environment, 96, 315–327.

    Article  Google Scholar 

  • Dungan, J. L., Perry, J. N., Dale, M. R. T., Legendre, P., Citron-Pousty, S., Fortin, M. J., et al. (2002). A balanced view of scale in spatial statistical analysis. Ecography, 25, 626–640.

    Article  Google Scholar 

  • Duro, D., Coops, N. C., Wulder, M. A., & Han, T. (2007). Development of a large area biodiversity monitoring system driven by remote sensing. Progress in Physical Geography, 31, 235–260.

    Article  Google Scholar 

  • Dussault, C., Ouellet, J. P., Courtois, R., Huot, J., Breton, L., & Jolicoeur, H. (2005). Linking moose habitat selection to limiting factors. Ecography, 28, 619–628.

    Article  Google Scholar 

  • Ecological Stratification Working Group. (1995). A national ecological framework for Canada. Ottawa: Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch.

    Google Scholar 

  • ESRI. (2008). ArcMap, version 9.3. Redlands: ESRI.

    Google Scholar 

  • Evans, K. L., Warren, P. H., & Gaston, K. J. (2005). Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Reviews, 80, 1–25.

    Article  Google Scholar 

  • Farmer, C. J. Q., Nelson, T. A., Wulder, M. A., & Derksen, C. (2010). Identification of snow cover regimes through spatial and temporal clustering of satellite microwave brightness temperatures. Remote Sensing of Environment, 114, 199–210.

    Article  Google Scholar 

  • Fernández, N., Paruelo, J. M., & Delibes, M. (2010). Ecosystem functioning of protected and altered Mediterranean environments: a remote sensing classification in Doñana, Spain. Remote Sensing of Environment, 114, 211–220.

    Article  Google Scholar 

  • Foody, G. M. (2006). What is the difference between two maps? A remote senser's view. Journal of Geographical Systems, 8, 119–130.

    Article  Google Scholar 

  • Foster, J. L., Sun, C. J., Walker, J. P., Kelly, R., Chang, A., Dong, J. R., et al. (2005). Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sensing of Environment, 94, 187–203.

    Article  Google Scholar 

  • Fotheringham, A. S., & Wong, D. W. S. (1991). The modifiable areal unit problem in multivariate statistical analysis. Environment and Planning A, 23, 1025–1044.

    Article  Google Scholar 

  • Fritz, S., & See, L. (2008). Identifying and quantifying uncertainty and spatial disagreement in the comparison of global land cover for different applications. Global Change Biology, 14, 1057–1075.

    Article  Google Scholar 

  • Giri, C., Zhu, Z. L., & Reed, B. (2005). A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sensing of Environment, 94, 123–132.

    Article  Google Scholar 

  • Goetz, S. J., Bunn, A. G., Fiske, G. J., & Houghton, R. A. (2005). Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceedings of the National Academy of Sciences of the United States of America, 102, 13521–13525.

    Article  CAS  Google Scholar 

  • Government of Canada. (1996). The state of Canada's environment. Ottawa: Government of Canada.

    Google Scholar 

  • Graef, F., Schmidt, G., Schröder, W., & Stachow, U. (2005). Determining ecoregions for environmental and GMO monitoring networks. Environmental Monitoring and Assessment, 108, 189–203.

    Article  CAS  Google Scholar 

  • Hansen, M. C., Defries, R. S., Townshend, J. R. G., & Sohlberg, R. (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21, 1331–1364.

    Article  Google Scholar 

  • Hawkins, C. P., & Vinson, M. R. (2000). Weak correspondence between landscape classifications and stream invertebrate assemblages: implications for bioassessment. Journal of the North American Benthological Society, 19, 501–517.

    Article  Google Scholar 

  • Hawkins, C. P., Norris, R. H., Gerritsen, J., Hughes, R. M., Jackson, S. K., Johnson, R. K., et al. (2000). Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations. Journal of the North American Benthological Society, 19, 541–556.

    Article  Google Scholar 

  • Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J. F., Kaufman, D. M., et al. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105–3117.

    Article  Google Scholar 

  • Herold, M., Mayaux, P., Woodcock, C. E., Baccini, A., & Schmullius, C. (2008). Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1 km datasets. Remote Sensing of Environment, 112, 2538–2556.

    Article  Google Scholar 

  • Host, G. E., Polzer, P. L., Mladenoff, D. J., White, M. A., & Crow, T. R. (1996). A quantitative approach to developing regional ecosystem classifications. Ecological Applications, 6, 608–618.

    Article  Google Scholar 

  • Huang, C., Geiger, E. L., & Kupfer, J. A. (2006). Sensitivity of landscape metrics to classification scheme. International Journal of Remote Sensing, 27, 2927–2948.

    Article  Google Scholar 

  • ITT Visual Information Solutions. (2009). ENVI, version 4.7. Boulder: ITT Visual Information Solutions.

    Google Scholar 

  • Jelinski, D. E., & Wu, J. G. (1996). The modifiable areal unit problem and implications for landscape ecology. Landscape Ecology, 11, 129–140.

    Article  Google Scholar 

  • Jenerette, G. D., Lee, J., Waller, D. W., & Carlson, R. E. (2002). Multivariate analysis of the ecoregion delineation for aquatic systems. Environmental Management, 29, 67–75.

    Article  Google Scholar 

  • Jung, M., Henkel, K., Herold, M., & Churkina, G. (2006). Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment, 101, 534–553.

    Article  Google Scholar 

  • Kaptué-Tchuenté, A. T., Roujean, J. L., & De Jong, S. M. (2011). Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. International Journal of Applied Earth Observation and Geoinformation, 13, 207–219.

    Article  Google Scholar 

  • Kerr, J. T., & Ostrovsky, M. (2003). From space to species: ecological applications for remote sensing. Trends in Ecology & Evolution, 18, 299–305.

    Article  Google Scholar 

  • Kimball, J. S., Keyser, A. R., Running, S. W., & Saatchi, S. S. (2000). Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps. Tree Physiology, 20, 761–775.

    Article  Google Scholar 

  • Kimball, J. S., McDonald, K. C., Running, S. W., & Frolking, S. E. (2004). Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests. Remote Sensing of Environment, 90, 243–258.

    Article  Google Scholar 

  • Kirkpatrick, J. B., & Brown, M. J. (1994). A comparison of direct and environmental domain approaches to planning reservation of forest higher-plant communities and species in Tasmania. Conservation Biology, 8, 217–224.

    Article  Google Scholar 

  • Lafleur, P. M., & Humphreys, E. R. (2007). Spring warming and carbon dioxide exchange over low arctic tundra in central Canada. Global Change Biology, 14, 740–756.

    Article  Google Scholar 

  • Leathwick, J. R., Overton, J. M., & Mcleod, M. (2003). An environmental domain classification of New Zealand and its use as a tool for biodiversity management. Conservation Biology, 17, 1612–1623.

    Article  Google Scholar 

  • Litaor, M. I., Williams, M., & Seastedt, T. R. (2008). Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. Journal of Geophysical Research-Biogeosciences, 113, G02008. doi:10.1029/2007JG000419.

    Article  Google Scholar 

  • Loveland, T. R., & Merchant, J. M. (2004). Ecoregions and ecoregionalization: geographical and ecological perspectives. Environmental Management, 34, S1–S13.

    Article  Google Scholar 

  • Mac Nally, R., Bennett, A. F., Brown, G. W., Lumsden, L. F., Yen, A., Hinkley, S., et al. (2002). How well do ecosystem-based planning units represent different components of biodiversity? Ecological Applications, 12, 900–912.

    Article  Google Scholar 

  • Mackey, B. G., Berry, S. L., & Brown, T. (2008). Reconciling approaches to biogeographical regionalization: a systematic and generic framework examined with a case study of the Australian continent. Journal of Biogeography, 35, 213–229.

    Article  Google Scholar 

  • Madsen, J., Tamstorf, M., Klaassen, M., Eide, N., Glahder, C., Rigét, F., et al. (2007). Effects of snow cover on the timing and success of reproduction in high-Arctic pink-footed geese Anser brachyrhynchus. Polar Biology, 30, 1363–1372.

    Article  Google Scholar 

  • McCormick, F. H., Peck, D. V., & Larsen, D. P. (2000). Comparison of geographic classification schemes for Mid-Atlantic stream fish assemblages. Journal of the North American Benthological Society, 19, 385–404.

    Article  Google Scholar 

  • McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. General Technical Report PNW-GTR-351. Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

    Google Scholar 

  • McMahon, G., Wiken, E. B., & Gauthier, D. A. (2004). Toward a scientifically rigorous basis for developing mapped ecological regions. Environmental Management, 34, S111–S124.

    Article  Google Scholar 

  • McRae, D. J. (1996). Use of forest ecosystem classification systems in fire management. Environmental Monitoring and Assessment, 39, 559–570.

    Article  Google Scholar 

  • Moody, E. G., King, M. D., Schaaf, C. B., Hall, D. K., & Platnick, S. (2007). Northern hemisphere five-year average (2000-2004) spectral albedos of surfaces in the presence of snow: statistics computed from Terra MODIS land products. Remote Sensing of Environment, 111, 337–345.

    Article  Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702.

    Article  CAS  Google Scholar 

  • Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y., et al. (2002). Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83, 214–231.

    Article  Google Scholar 

  • Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G. L., Solymos, P., et al. (2008). The vegan package. http://vegan.r-forge.r-project.org/.

  • Oliver, I., Holmes, A., Dangerfield, J. M., Gillings, M., Pik, A. J., Britton, D. R., et al. (2004). Land systems as surrogates for biodiversity in conservation planning. Ecological Applications, 14, 485–503.

    Article  Google Scholar 

  • Olson, D. M., & Dinerstein, E. (1998). The Global 200: a representation approach to conserving the Earth's most biologically valuable ecoregions. Conservation Biology, 12, 502–515.

    Article  Google Scholar 

  • Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., et al. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience, 51, 933–938.

    Article  Google Scholar 

  • Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association of American Geographers, 77, 118–125.

    Article  Google Scholar 

  • Omernik, J. M. (2004). Perspectives on the nature and definition of ecological regions. Environmental Management, 34, S27–S38.

    Article  Google Scholar 

  • Parker, W. H., Van Niejenhuis, A., & Ward, J. (1996). Genecological variation corresponding to forest ecosystem classification vegetation and soil types for jack pine and black spruce from northwestern Ontario. Environmental Monitoring and Assessment, 39, 589–599.

    Article  Google Scholar 

  • Parks Canada. (1997). National parks system plan. Ottawa: Parks Canada.

    Google Scholar 

  • Patton, D. R. (1975). A diversity index for quantifying habitat "edge". Wildlife Society Bulletin, 3, 171–173.

    Google Scholar 

  • Petit, S., Firbank, R., Wyatt, B., & Howard, D. (2001). MIRABEL: models for integrated review and assessment of biodiversity in European landscapes. Ambio, 30, 81–88.

    CAS  Google Scholar 

  • Pharo, E. J., & Beattie, A. J. (2001). Management forest types as a surrogate for vascular plant, bryophyte and lichen diversity. Australian Journal of Botany, 49, 23–30.

    Article  Google Scholar 

  • Pressey, R. L., & Logan, V. S. (1994). Level of geographical subdivision and its effects on assessments of reserve coverage—a review of regional studies. Conservation Biology, 8, 1037–1046.

    Article  Google Scholar 

  • Pyne, M. I., Rader, R. B., & Christensen, W. F. (2007). Predicting local biological characteristics in streams: a comparison of landscape classifications. Freshwater Biology, 52, 1302–1321.

    Article  Google Scholar 

  • R Core Development Team. (2008). R, version 2.8.1. R Core Development Team, http://www.r-project.org.

  • Rabus, B., Eineder, M., Roth, A., & Bamler, R. (2003). The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57, 241–262.

    Article  Google Scholar 

  • Räisänen, J. (2008). Warmer climate: less or more snow? Climate Dynamics, 30, 307–319.

    Article  Google Scholar 

  • SPSS Inc. (2008). SPSS, version 17.0. Chicago: SPSS Inc.

    Google Scholar 

  • StatSoft Inc. (2008). STATISTICA, version 8.0. Tulsa: StatSoft Inc.

    Google Scholar 

  • Tait, A. B. (1998). Estimation of snow water equivalent using passive microwave radiation data. Remote Sensing of Environment, 64, 286–291.

    Article  Google Scholar 

  • Thompson, R. S., Shafer, S. L., Anderson, K. H., Strickland, L. E., Pelltier, R. T., Bartlein, P. J., et al. (2004). Topographic, bioclimatic, and vegetation characteristics of three ecoregion classification systems in North America: comparisons along continent-wide transects. Environmental Management, 34, S125–S148.

    Article  Google Scholar 

  • Trakhtenbrot, A., & Kadmon, R. (2006). Effectiveness of environmental cluster analysis in representing regional species diversity. Conservation Biology, 20, 1087–1098.

    Article  Google Scholar 

  • Van Sickle, J., & Hughes, R. M. (2000). Classification strengths of ecoregions, catchments, and geographic clusters for aquatic vertebrates in Oregon. Journal of the North American Benthological Society, 19, 370–384.

    Article  Google Scholar 

  • Walker, D. A., Halfpenny, J. C., Walker, M. D., & Wessman, C. A. (1993). Long-term studies of snow-vegetation interactions. Bioscience, 43, 287–301.

    Article  Google Scholar 

  • Wells, F., Metzeling, L., & Newall, P. (2002). Macroinvertebrate regionalisation for use in the management of aquatic ecosystems in Victoria, Australia. Environmental Monitoring and Assessment, 74, 271–294.

    Article  CAS  Google Scholar 

  • Wiken, E. B., Gauthier, D., Marshall, I., Lawton, K., & Hirvonen, H. (1996). A perspective on Canada's ecosystems: an overview of the terrestrial and marine ecozones. Occasional paper no. 14. Ottawa: Canadian Council on Ecological Areas.

    Google Scholar 

  • Wright, R. G., Murray, M. P., & Merrill, T. (1998). Ecoregions as a level of ecological analysis. Biological Conservation, 86, 207–213.

    Article  Google Scholar 

  • Zhang, T., Ramakrishnan, R., & Livny, M. (1997). BIRCH: a new data clustering algorithm and its applications. Data Mining and Knowledge Discovery, 1, 141–182.

    Article  Google Scholar 

  • Zhou, L. M., Tucker, C. J., Kaufmann, R. K., Slayback, D., Shabanov, N. V., & Myneni, R. B. (2001). Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research-Atmospheres, 106, 20069–20083.

    Article  Google Scholar 

Download references

Acknowledgments

This research was facilitated through support of “BioSpace: Biodiversity monitoring with Earth observation data” through the Government Related Initiatives Program of the Canadian Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret E. Andrew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrew, M.E., Nelson, T.A., Wulder, M.A. et al. Ecosystem classifications based on summer and winter conditions. Environ Monit Assess 185, 3057–3079 (2013). https://doi.org/10.1007/s10661-012-2773-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2773-z

Keywords

Navigation