Skip to main content

Advertisement

Log in

Distribution and potential sources of polycyclic aromatic hydrocarbons in soils around coal-fired power plants in South Africa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The distribution and potential sources of 15 polycyclic aromatic hydrocarbons (PAHs) in soils in the vicinity of three South African coal-fired power plants were determined by gas chromatography–mass spectrometry. PAH compound ratios such as phenanthrene/phenanthrene + anthracene (Phen/Phen + Anth) were used to provide reliable estimation of emission sources. The total PAH concentration in the soils around three power plants ranged from 9.73 to 61.24 μg g−1, a range above the Agency for Toxic Substances and Disease Registry levels of 1.0 μg g−1 for significantly contaminated site. Calculated values of Phen/Phen + Anth ratio were 0.48 ± 0.08, 0.44 ± 0.05, and 0.38 + 0.04 for Matla, Lethabo, and Rooiwal, respectively. Flouranthene/fluoranthene + pyrene (Flan/Flan + Pyr) were found to be 0.49 ± 0.03 for Matla, 0.44 ± 0.05 for Lethabo, and 0.53 ± 0.08 for Rooiwal. Such values indicate a pyrolytic source of PAHs. Higher molecular weight PAHs (five to six rings) were predominant, suggesting coal combustion sources. A good correlation existed between most of the PAHs implying that these compounds were emitted from similar sources. The carcinogenic potency B[a]P equivalent concentration (B[a] Peq) at the three power plants ranged from 3.61 to 25.25 indicating a high carcinogenic burden. The highest (B[a] Peq) was found in samples collected around Matla power station. It can therefore be concluded that the soils were contaminated with PAHs originating from coal-fired power stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1995c). Toxicological Profile for Polycyclic Aromatic Hydrocarbons, U.S. Department of Health and Human Services, Public Health Service, www.atsdr.cdc.gov/toxprofiles/tp69.html.

  • Bakker, M. I., Casado, B., Koerselman, J. W., Tolls, J., & Kolloffel, C. (2001). Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery. Science of the Total Environment, 263, 91–100.

    Article  Google Scholar 

  • Braendli, R. C., Bucheli, T. D., Kupper, T., Mayer, J., Stadelmann, F. X., & Tarradellas, J. (2007). Fate of PCBs, PAHs and their source characteristic ratios during composting and digestion of source separated organic waste in full-scale plants. Environmental Pollution, 148, 520–528.

    Article  CAS  Google Scholar 

  • Cai, Q. Y., Mo, C. H., Li, Y. H., Zeng, Q. Y., Katsoyiannis, A., Wu, Q. T., & Ferard, J. F. (2007). Occurrence and assessment of polycyclic aromatic hydrocarbons in soils from vegetable fields of the Pearl River Delta, South China. Chemosphere, 68, 159–168.

    Article  CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment) (2008). Canadian Soil Quality Guidelines for Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects). Scientific Supporting Document.

  • Crnkovic, D., Ristic, M., Jovanovic, A., & Antonovic, D. (2007). Levels of PAHs in the soils of Belgrade and its environs. Environmental Monitoring and Assessment, 125, 75–83.

    Article  CAS  Google Scholar 

  • Dahle, S., Savinov, V. M., Matishov, G. G., Evenset, A., & Næs, K. (2003). Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay. Science of the Total Environment, 306, 57–71.

    Article  CAS  Google Scholar 

  • Dominguez, C., Sarkar, S. K., Bhattacharya, A., Chatterjee, M., Bhattacharya, B. D., Jover, E., Albaiges, J., Bayona, J. M., Alam, M. A., & Satpathy, K. K. (2010). Quantification and source identification of polycyclic aromatic hydrocarbons in core sediments from sundarban mangrove wetland, India. Archives of Environmental Contamination and Toxicology, 59, 49–61. doi:10-10007/s00244-009-9444-2.

    Article  CAS  Google Scholar 

  • Dor, F., Jongeneelen, F., Zmirou, D., Empereur-Bissonnet, P., Nedellec, V., Haguenoer, J. M., Person, A., Ferguson, C., & Dab, W. (2000). Feasibility of assessing dermal exposure to PAHs of workers on gaswork sites—the SOLEX study. Science of the Total Environment, 263, 47–55.

    Article  CAS  Google Scholar 

  • Guo, J. Y., Wu, F. C., Zhang, L., Liao, H. Q., Zhang, R. Y., Li, W., Zhao, X. L., Chen, S. J., & Mai, B. X. (2011). Screening level of PAHs in sediment core from Lake Hongfeng, Southwest China. Archives of Environmental Contamination and Toxicology, 60, 590–596. doi:10.1007/s00244-010-9568.

    Article  CAS  Google Scholar 

  • Halsall, C. J., Sweetman, A. J., Barrie, L. A., & Jones, K. C. (2001). Modeling the behavior of PAHs during atmospheric transport from the UK to the Arctic. Atmospheric Environment, 35, 255–267.

    Article  CAS  Google Scholar 

  • Kong, S. F., Shi, J. W., Lu, B., Qiu, W. G., Zhang, B. S., Peng, Y., Zhang, B. W., & Bai, Z. P. (2011). Characterization of PAHs within PM10 fraction for ashes from coke production, iron smelt, heating station and power plant stacks in Liaoning Province, China. Atmospheric Environment, 45, 3777–3785. doi:10.1016/j.atmosenv.2011.04.029.

    Article  CAS  Google Scholar 

  • Liu, G. Q., Zhang, G., Li, X. D., Li, J., Peng, X. Z., & Qi, S. H. (2005). Sedimentary record of polycyclic aromatic hydrocarbons in a sediment core from the Pearl River Estuary, South China. Marine Pollution Bulletin, 51, 912–921.

    Article  CAS  Google Scholar 

  • Murakami, M., Nakajima, F., & Furumai, H. (2005). Size- and density distributions and sources of polycyclic aromatic hydrocarbons in urban road dust. Chemosphere, 61, 783–791.

    Article  CAS  Google Scholar 

  • Nadal, M., Schuhmacher, M., & Domingo, J. L. (2004). Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environmental Pollution, 132, 1–11.

    Article  CAS  Google Scholar 

  • Nam, J. J., Song, B. H., Eom, K. C., Lee, S. H., & Smith, A. (2003). Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea. Chemosphere, 50, 1281–1289.

    Article  CAS  Google Scholar 

  • Olajire, A. A., Alade, O. A., Adeniyi, A. A., & Olabemiwo, O. M. (2007). Distribution of polycyclic aromatic hydrocarbons in surface soils and water from the vicinity of Agbabu bitumen field of South western Nigeria. Journal of Environmental Science and Health Part A, 42, 1043–1049.

    CAS  Google Scholar 

  • Qiao, M., Wang, C. X., Huang, S. B., Wang, D. H., & Wang, Z. J. (2006). Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environment International, 32, 28–33.

    Article  CAS  Google Scholar 

  • Rajput, N., & Lakhani, A. (2010). Measurement of polycyclic aromatic hydrocarbons in an urban atmosphere of Agra, India. Atmosfera, 23, 165–183.

    CAS  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42, 2895–2921.

    Article  CAS  Google Scholar 

  • Ribes, S., Van Drooge, B., Dachs, J., Gustafsson, O., & Grimalt, J. O. (2003). Influence of soot carbon on the soil–air partitioning of polycyclic aromatic hydrocarbons. Environmental Science and Technology, 37, 2675–2680.

    Article  CAS  Google Scholar 

  • Sanders, M., Sivertsen, S., & Scott, G. (2002). Origin and distribution of polycyclic aromatic hydrocarbons in surficial sediments from the Savannah River. Archives of Environmental Contamination and Toxicology, 43, 438–448.

    Article  CAS  Google Scholar 

  • Sicre, M. A., Mary, J. C., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea and origin. Atmospheric Environment, 21, 2247–2259.

    Article  CAS  Google Scholar 

  • Tao, S., Cui, Y. H., Xu, F., Li, B. G., Cao, J., Liu, W., Schmitt, G., Wang, X. J., Shen, W., Qing, B. P., & Sun, R. (2004). Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Science of the Total Environment, 320, 11–24.

    Article  CAS  Google Scholar 

  • USEPA (1993). Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. EPA/600/R-93/089, July 1993.

  • Wang, R. W., Liu, G. J., Chou, C. L., Liu, J. J., & Zhang, J. M. (2009). Environmental assessment of PAHs in soils around the Anhui Coal District, China. Archives of Environmental Contamination and Toxicology, 59, 62–70.

    Article  Google Scholar 

  • Zohair, A., Salim, A. B., Soyibo, A. A., & Beck, A. J. (2006). Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables. Chemosphere, 63, 541–553.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the generosity of the executive dean of the College of Science Engineering and Technology (UNISA) for the financial support of Mr O.O. Okedeyi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew M. Nindi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okedeyi, O.O., Nindi, M.M., Dube, S. et al. Distribution and potential sources of polycyclic aromatic hydrocarbons in soils around coal-fired power plants in South Africa. Environ Monit Assess 185, 2073–2082 (2013). https://doi.org/10.1007/s10661-012-2689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2689-7

Keywords

Navigation