Skip to main content
Log in

Assessment of seawater impact using major hydrochemical ions: a case study from Sadras, Tamilnadu, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The impact of seawater intrusion was investigated using major hydrogeochemical ions to evaluate the origin of salinity in Sadras watershed located between Buckingham Canal and Bay of Bengal in the southeastern coast of India. From empirical data collected twice during pre- and post-monsoon seasons, it was found that groundwater was slightly acidic to mildly alkaline, and more than 44% of groundwater samples had EC > 3,000 μS/cm in both the seasons. Results of principle component analysis (PCA) showed that Na + , Cl − , Mg2 + , and SO\(_{4}^{\,\, 2-}\) concentrations had the highest loading factor and the samples affected by saline/seawater were separated from the cluster. Hydrochemical processes that accompany the saline/seawater were identified using ionic changes. It was observed during sampling periods that the mixing due to saline/seawater intrusion varied from 4.82–7.86%. Negative values of ionic change (e change) for Na +  and K +  decreased with the increasing fraction of seawater. Furthermore, salinity, sodium adsorption ratio, percentage of sodium Na (%), and exchangeable sodium percentage in well samples showed that groundwater was unsuitable for irrigation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adepelumi, A. A., Ako, B. D., Ajayi, T. R., Afolabi, O., & Omotoso, E. J. (2009). Delineation of saltwater intrusion into the freshwater aquifer of Lekki Peninsula, Lagos, Nigeria. Environmental Geology, 56, 927–933.

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA) (1985). Standard methods for the examination of water and waste (16th ed., p. 100). Washington, DC, USA: Am. Public Health Assoc.

    Google Scholar 

  • Anderson, T. W. (1958). Introduction to multivariate statistical analysis. New York: Wiley.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, ground water and pollution (2nd ed.). Rotterdam: Balkema.

    Book  Google Scholar 

  • Arumugham, V. (1994). Site characterization for location of radioactive waste repository—A case study. Ph.D. Thesis, Indian Institute of Technology, Bombay, India.

  • Barrett, B., Heinson, G., Hatch, M., & Telfer, A. (2002). Geophysical methods in saline groundwater studies: Locating perched water tables and fresh-water lenses. Exploration Geophysics, 33, 115–121.

    Article  Google Scholar 

  • Beddows, P. A., Smart, P. L., Whitaker, F. F., & Smith, S. L. (2007). Decoupled fresh-saline groundwater circulation of a coastal carbonate aquifer: Spatial patterns of temperature and specific electrical conductivity. Journal of Hydrology, 346, 18–32.

    Article  Google Scholar 

  • Bobba, A. G. (2002). Numerical modeling of salt-water intrusion due to human activities and sea-level change in the Godavari Delta, India. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 47, S67–S80.

    Article  Google Scholar 

  • Bottomley, D. J., Katz, A., Chan, L. H., Starinsky, A., Douglas, I. D., Clark, I. D., et al. (1999). The origin and evolution of Canadian Shield brines: Evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton. Chemical Geology, 155, 295–320.

    Article  CAS  Google Scholar 

  • Brown, C. H. (1998). Applied multivariate statistics in geohydrology and related sciences. Berlin: Springer.

    Google Scholar 

  • Brown, E., Skougstad, M. W., & Fishmen, M. J. (1983). Method for collection and analyzing of water samples for dissolved minerals and gases (p. 75). Washington DC, USA: U.S. Govt. Printing Office.

    Google Scholar 

  • Casanova, J., Négrel, P., Kloppmann, W., & Aranyossy, J. F. (2001). Origin of deep saline groundwaters in the Vienne granitoids (France). Constraints inferred from boron and strontium isotopes. Geofluids, 1, 91–102.

    Article  CAS  Google Scholar 

  • Cheng, A. H. D., & Ouazar, D. (2004). Coastal aquifer management-monitoring, modeling, and case studies (p. 280). USA: Lewis Publishers.

    Google Scholar 

  • Diamantis, I. B., & Petalas, C. P. (1989). Seawater intrusion into coastal aquifers of Thrace and its impact on the environment. Toxicol Environmental Chemistry, 20–21, 291–305.

    Article  Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology. New York: Wiley.

    Google Scholar 

  • Ergil, M. E. (2000). The salination problem of the Guzelyurt aquifer, Cyprus. Water Research, 34(4), 1201–1214.

    Article  CAS  Google Scholar 

  • Fidelibus, M. D. (2003). Environmental tracing in coastal aquifers: Old problems and new solutions. In Coastal aquifer intrusion technology: Mediterranean countries (Vol. 2, pp. 79–111). Madrid: Publ. IGME.

    Google Scholar 

  • Franco, R., Biella, G., Tosi, L., Teatini, P., Lozej, A., Chiozzotto, B., et al. (2009). Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy). Journal of Applied Geophysics, 69(3–4), 117–130.

    Article  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170, 1088–1090.

    Article  CAS  Google Scholar 

  • Gurumoorthy, C., Sasidhar, P., Arunugham, V., & Nathur, R. K. (2004). Sub-surface investigations on deep saline ground water of charnokite rock formation, Kalpakkam, India. Environmental Monitoring and Assessment, 91, 211–22.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1989). Study and interpretation of the chemical characteristics of natural water. U.S.G.S. Water-supply paper (Vol. 2254). Washington DC: US Government Printing Office.

    Google Scholar 

  • Jalali, M. (2007). Salinization of ground water in arid and semi-arid zones: An example from Tajarak, western Iran. Environmental Geology, 52, 1133–1149.

    Article  CAS  Google Scholar 

  • Karanath, K. R. (1987). Quality of ground water. In: K. R. Karnath (Ed.), Ground water assessment development and management (pp. 217–275). New Delhi: Tata McGraw Hill.

    Google Scholar 

  • Kim, K. Y., Chon, C. M., & Park, K. H. (2007). A simple method for locating fresh water–salt water interface using pressure data. Ground Water, 45(6), 723–728.

    Article  CAS  Google Scholar 

  • Kim, K. Y., Park, Y. S., Kim, G. P., & Park, K. H. (2009). Dynamic freshwater–saline water interaction in the coastal zone of Jeju Island, South Korea. Hydrogeological Journal, 17, 617–629.

    Article  CAS  Google Scholar 

  • Lambrakis, N. J. (1998). The impact of human activities in the Malia coastal area (Crete) on groundwater quality. Environmental Geology, 36(1–2), 87–92.

    Article  CAS  Google Scholar 

  • Mandel, S., & Shiftan, Z. L. (1980). Ground water resources investigation and development. New York: Academic Press.

    Google Scholar 

  • Mhamdi, A., Gouasmia, M., Gasmi, M., Bouri, S., & Dhia, H. B. (2006). Evaluation of the water quality by the geoelectrical method: Example of the El Mida plain-North Gabes (southern Tunisia). Comptes Rendus Geoscience, 338(16), 1228–1239.

    Article  Google Scholar 

  • Mondal, N. C., Singh, V. S., Saxena, V. K., & Prasad, R. K. (2008). Improvement of ground water quality due to fresh water ingress in Potharlanka Island, Krishna delta, India. Environmental Geology, 55(3), 595–603.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Singh, V. P., Singh, S., & Singh, V. S. (2010a). Hydrochemical characteristic of coastal aquifer from Tuticorin, Tamil Nadu, India. Environmental Monitoring and Assessment. doi:10.1007/s10661-010-1549-6.

  • Mondal, N. C., Singh, V. S., Puranik, S. C., & Singh, V. P. (2010b). Trace element concentration in groundwater of Pesarlanka Island, Krishna Delta, India. Environmental Monitoring and Assessment, 163(1–4), 215–227.

    Article  CAS  Google Scholar 

  • Morrison, D. F. (1964). Multivariate statistical methods. New York: McGraw Hill.

    Google Scholar 

  • Murad, A. A., & Krishnamurthy, R. V. (2004). Factors controlling groundwater quality in Eastern United Arab Emirates: A chemical and isotopic approach. Journal of Hydrology, 286(1–4), 227–235.

    Article  CAS  Google Scholar 

  • Nasab, A. A., Boufadel, M. C., Li, H., & Weaver, J. W. (2010). Saltwater flushing by freshwater in a laboratory beach. Journal of Hydrology, 386(1–4), 1–12.

    Article  Google Scholar 

  • Oteri, A. U. (1988). Electric log interpretation for the evaluation of salt water intrusion in the eastern Niger Delta. Hydrological Science Journal, 33(2), 19–30.

    Article  CAS  Google Scholar 

  • Papatheodorou, G., Lambrakis, N., & Panagopoulos, G. (2007). Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: An example from Crete, Greece. Hydrological Processes, 21, 1482–1495.

    Article  CAS  Google Scholar 

  • Park, S. C., Yun, S. T., Chae, G. T., Yoo, I. S., Shin, K. S., Heo, C. H., et al. (2005). Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. Journal of Hydrology, 313, 182–194.

    Article  CAS  Google Scholar 

  • Pujari, P. R., & Soni, A. K. (2009). Sea water intrusion studies near Kovaya limestone mine, Saurashtra coast, India. Environmental Monitoring and Assessment, 154(1–4), 93–109.

    Article  CAS  Google Scholar 

  • Qahman, K., & Larabi, A. (2006). Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine). Hydrogeological Journal, 14, 713–728.

    Article  CAS  Google Scholar 

  • Rabinove, C. L., Longford, R. H., & Brookhart, J. W. (1958). Saline water resources of North Dakota (p. 364). US Geographical Survey Water Supply, Paper 1418.

  • Radharkishna, I., & Chowdary, M. V. R. (1998). Simulation of chloride migration rates in Paleo Pennar delta region, coastal Andhra Pradesh, India. Environmental Geology, 36(1–2), 109–117.

    CAS  Google Scholar 

  • Rajmohan, N., Elango, L., Ramachandran, S. & Natarajan, M. (2000). Major ion correlation in ground water of Kancheepuram Region, South India. Indian Journal of Environmental Protection, 20(3), 188–193.

    CAS  Google Scholar 

  • Ramesh, R. (2003). Ground water quality along the east coast of India. In Recent trends in hydrogeochemistry (pp. 139–146). New Delhi: Publishing Company.

    Google Scholar 

  • Rao, N. S., Nirmala, I. S., & Suryanarayana, K. (2005). Groundwater quality in a coastal area: A case study from Andhra Pradesh, India. Environmental Geology, 48(4–5), 543–550.

    Article  CAS  Google Scholar 

  • Sarwade, D. V., Nandakumar, M. V., Kesari, M. P., Mondal, N. C., Singh, V. S. & Singh, B. (2007). Evaluation of seawater ingress into an Indian Attoll. Environmental Geology, 52(2), 1475–1483.

    Article  Google Scholar 

  • Satpathy, C. C., Mathur, P. K. & Nair, K. V. K. (1987). Contribution of Edayur-Sadras estuarine system to the hydrographic characteristics of Kalpakkam coastal waters. Journal of the Marine Biological Association, 29(1–2), 344–350.

    Google Scholar 

  • Saxena, V. K., Singh, V. S., Mondal, N. C., & Jain, S. C. (2003). Use of chemical parameters to delineation fresh ground water resources in Potharlanka Island, India. Environmental Geology, 44(5), 516–521.

    Article  CAS  Google Scholar 

  • Saxena, V. K., Mondal, N. C., & Singh, V. S. (2004). Identification of seawater ingress using Sr and B in Krishna delta. Current Science, 86(4), 586–590.

    CAS  Google Scholar 

  • Saxena, V. K., Mondal, N. C., Singh, V. S., & Kumar, D. (2005). Identification of water-bearing fractures in hard rock terrain by electrical conductivity logs, India. Environmental Geology, 48(8), 1084–1095.

    Article  CAS  Google Scholar 

  • Senthilkumar, G., Ramanathan, A. L., Nainwal, H. C., & Chidambaram, S. (2008). Evaluation of the hydro geochemistry of groundwater using factor analysis in the Cuddalore coastal region, Tamil Nadu, India. Indian Journal of Marine Sciences, 37(2), 181–185.

    CAS  Google Scholar 

  • Shainberg, I., & Oster, J. D. (1976). Quality of irrigation water. IIIC publication no. 2.

  • Sharma, S. (1996) Applied Multivariate Techniques (pp. 90–143) . New York: Wiley.

    Google Scholar 

  • Sherif, M. & Kacimov, A. (2007). Seawater intrusion in the coastal aquifer of Wadi Ham, UAE: A new focus on groundwater seawater interactions. In Proceedings of symposium HS 1001 at IUGG 2007, Perugia (pp. 315–325). Wallingford, UK: IAHS Publ. 312, IAHS.

    Google Scholar 

  • Singh, U. K., Das, R. K., & Hodlur, G. K. (2004a). Significance of Dar-Zarruck parameters in the exploration of quality affected coastal aquifer systems. Environmental Geology, 45, 696–702.

    Article  CAS  Google Scholar 

  • Singh, V. S., Sarwade, D. V., Mondal, N. C., Nanadakumar, M. V., & Singh, B. (2009). Evaluation of groundwater resources in a tiny Andrott Island, Union Territory of Lakshadweep, India. Environmental Monitoring and Assessment, 158(1–4), 145–154.

    Article  CAS  Google Scholar 

  • Singh, V. S., & Saxena, V. K. (2004). Assessment of utilization ground water resources in a coastal shallow aquifer. In Proceeding of the 2nd Asia pacific association of hydrology & water resources conference (Vol. 2, pp. 347–364). Singapore.

  • Singh, V. S., Saxena, V. K., Prakash, B. A., Mondal, N. C., & Jain, S. C. (2004b). Augmentation of ground water resources in saline ingress coastal deltaic area (p. 61). NGRI-Tech. Report. No. NGRI-2004-GW-422.

  • Somay, M. A., & Gemici, U. (2009). Assessment of the salinization process at the coastal area with hydrogeochemical tools and geographical information systems (GIS): Selçuk plain, Izmir, Turkey. Water Air Soil Pollution, 201, 55–74.

    Article  CAS  Google Scholar 

  • Subba Rao, N. (2006). Seasonal variation of groundwater quality in a part of Guntur district, Andhra Pradesh, India. Environmental Geology, 49, 413–429.

    Article  Google Scholar 

  • Sukhija, B. S., Varma, V. N., Nagabhushanam, P., & Reddy, D. V. (1996). Differentiation of paleomarine and modern seawater intruded salinities in coastal ground waters (of Karaikal and Tanjavur, India) based on inorganic chemistry, organic biomarker fingerprints and radiocarbon dating. Journal of Hydrology, 174, 173–201.

    Article  CAS  Google Scholar 

  • Taniguchi, M., Ishitobi, T., Burnett, W. C., & Wattayakorn, G. (2007). Evaluating ground water–sea water interactions via resistivity and seepage meters. Ground Water, 45(6), 729–735.

    Article  CAS  Google Scholar 

  • Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics (2nd ed.). New York: Cambridge University Press.

    Google Scholar 

  • Tellam, J. H. (1995). Hydrochemistry of the saline ground waters of the lower Mersey Basin Permo-Triassic sandstone aquifer, UK. Journal Hydrology, 165, 45–84.

    Article  CAS  Google Scholar 

  • Thorne, D. W., & Petersonm, H. B. (1954). Irrigated soils. London: Constable and Company.

    Google Scholar 

  • Tijani, M. N. (1994). Hydrogeochemical assessment of groundwater in Moro Area, Kwara State, Nigeria. Environmental Geology, 24(3), 194–202.

    Article  CAS  Google Scholar 

  • Todd, D. K. (1959). Ground water hydrology (pp. 277–294). New York: Wiley.

    Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology (2nd ed.). New York: Wiley.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation waters (p. 19). U.S. Dept. Agri., Circular, No. 969.

  • World Health Organization (WHO) (1984). Guideline of drinking quality (pp. 333–335). Washington, DC, USA: World Health Organization.

    Google Scholar 

  • Yaouti, F. E., Mandour, A. E., Khattach, D., Benavente, J., & Kaufmann, O. (2009). Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): A geostatistical, geochemical, and tomographic study. Applied Geochemistry, 24, 16–31.

    Article  Google Scholar 

  • Zekri, S. (2008). Using economic incentives and regulations to reduce seawater intrusion in the Batinah coastal area of Oman. Agricultural Water Management, 95(3), 243–252.

    Article  Google Scholar 

  • Zhang, Q., Volker, R. E., & Lockington, D. A. (2004). Numerical investigation of seawater intrusion at Gooburrum, Bundaberg, Queensland, Australia. Hydrogeological Journal, 12, 674–687.

    Article  CAS  Google Scholar 

  • Zhou, X., Chen, M., Ju, X., Ning, X., & Wang, J. (2000). Numerical simulation of sea water intrusion near Beihai, China. Environmental Geology, 40(1–2), 223–233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Mondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, N.C., Singh, V.S., Saxena, V.K. et al. Assessment of seawater impact using major hydrochemical ions: a case study from Sadras, Tamilnadu, India. Environ Monit Assess 177, 315–335 (2011). https://doi.org/10.1007/s10661-010-1636-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1636-8

Keywords

Navigation