Skip to main content
Log in

A novel approach to exploring maximum consensus graphs from users’ preference data in a new age environment

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

Many methods have been used to produce coherent aggregated results from individual’s preference data, such as decision-making support systems, group recommendation systems, and so on. This study proposes a new framework where a graph model is used to represent user preferences and develops a new algorithm for detecting the maximum consensus and majority user group. The maximum consensus graph can be used to illustrate the preferences of the majority of the users. Similarly, discovering the segment of users who belong to the majority is useful information for the decision maker in order to produce consensus opinions and for market mangers to propose the most feasible strategies. In this study we initiate a new approach to the group ranking problem. Experiments using synthetic and real datasets show the model’s computational efficiency, scalability, and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hogg, T. (2010). Inferring preference correlations from social networks. Electronic Commerce Research and Applications, 9(1), 29–37.

    Article  Google Scholar 

  2. Li, Y.-M., Lin, C.-H., & Lai, C.-Y. (2010). Identifying influential reviewers for word-of-mouth marketing. Electronic Commerce Research and Applications, 9(4), 294–304.

    Article  ADS  Google Scholar 

  3. Xu, K., Guo, X., Li, J., Lau, R. Y., & Liao, S. S. (2012). Discovering target groups in social networking sites: An effective method for maximizing joint influential power. Electronic Commerce Research and Applications, 11(4), 318–334.

    Article  Google Scholar 

  4. Cook, W. D., Golany, B., Kress, M., Penn, M., & Raviv, T. (2005). Optimal allocation of proposals to reviewers to facilitate effective ranking. Management Science, 51(4), 655–661.

    Article  Google Scholar 

  5. Fernandez, E., & Olmedo, R. (2005). An agent model based on ideas of concordance and discordance for group ranking problems. Decision Support Systems, 39(3), 429–443.

    Article  Google Scholar 

  6. Campanella, G., & Ribeiro, R. A. (2011). A framework for dynamic multiple-criteria decision making. Decision Support Systems, 52(1), 52–60.

    Article  Google Scholar 

  7. Chakhar, S., & Saad, I. (2012). Dominance-based rough set approach for groups in multicriteria classification problems. Decision Support Systems, 54(1), 372–380.

    Article  Google Scholar 

  8. Wu, Z., & Xu, J. (2012). A consistency and consensus based decision support model for group decision making with multiplicative preference relations. Decision Support Systems, 52(3), 757–767.

    Article  Google Scholar 

  9. Mousavi, S. M., Jolai, F., Tavakkoli-Moghaddam, R., & Vahdani, B. (2013). A fuzzy grey model based on the compromise ranking for multi-criteria group decision making problems in manufacturing systems. Journal of Intelligent & Fuzzy Systems, 24(4), 819–827.

    MathSciNet  MATH  Google Scholar 

  10. Chen, Y.-L., & Cheng, L.-C. (2008). A novel collaborative filtering approach for recommending ranked items. Expert Systems with Applications, 34(4), 2396–2405.

    Article  Google Scholar 

  11. Rad, A., Naderi, B., & Soltani, M. (2011). Clustering and ranking university majors using data mining and AHP algorithms: A case study in Iran. Expert Systems with Applications, 38(1), 755–763.

    Article  Google Scholar 

  12. Fagin, R., Kumar, R., & Sivakumar, D. (2003). Efficient similarity search and classification via rank aggregation. In Proceedings of the 2003 ACM SIGMOD iIternational Conference on Management of Data (pp. 301–312). Bridgeton: ACM.

  13. Huang, T. C.-K. (2013). A novel group ranking model for revealing sequence and quantity knowledge. European Journal of Operational Research, 231(3), 654–666.

    Article  MathSciNet  Google Scholar 

  14. Beg, M. S., & Ahmad, N. (2003). Soft computing techniques for rank aggregation on the world wide web. World Wide Web, 6(1), 5–22.

    Article  Google Scholar 

  15. Chen, Y.-L., & Cheng, L.-C. (2009). Mining maximum consensus sequences from group ranking data. European Journal of Operational Research, 198(1), 241–251.

    Article  MATH  Google Scholar 

  16. Chen, Y.-L., & Cheng, L.-C. (2010). An approach to group ranking decisions in a dynamic environment. Decision Support Systems, 48(4), 622–634.

    Article  Google Scholar 

  17. Kemeny, J. G., & Snell, L. (1962). Preference ranking: an axiomatic approach. Mathematical models in the social sciences, 2, 9–23.

    MathSciNet  Google Scholar 

  18. Cohen, W. W., Schapire, R. E., & Singer, Y. (1999). Learning to order things. Journal of Artificial Intelligence Research, 10(1), 243–270.

    MathSciNet  MATH  Google Scholar 

  19. Saaty, T. L. (1987). Rank generation, preservation, and reversal in the analytic hierarchy decision process. Decision Sciences, 18(2), 157–177.

    Article  Google Scholar 

  20. Bogart, K. P. (1975). Preference structures. II: distances between asymmetric relations. SIAM Journal on Applied Mathematics, 29(2), 254–262.

    Article  MathSciNet  MATH  Google Scholar 

  21. Hochbaum, D. S., & Levin, A. (2006). Methodologies and algorithms for group-rankings decision. Management Science, 52(9), 1394–1408.

    Article  Google Scholar 

  22. Wang, B., Liang, J., & Qian, Y. (2014). Determining decision makers’ weights in group ranking: a granular computing method. International Journal of Machine Learning and Cybernetics, 6(3), 511–521.

    Article  MathSciNet  Google Scholar 

  23. Damart, S., Dias, L. C., & Mousseau, V. (2007). Supporting groups in sorting decisions: Methodology and use of a multi-criteria aggregation/disaggregation DSS. Decision Support Systems, 43(4), 1464–1475.

    Article  Google Scholar 

  24. González-Pachón, J., & Romero, C. (2001). Aggregation of partial ordinal rankings: an interval goal programming approach. Computers & Operations Research, 28(8), 827–834.

    Article  MATH  Google Scholar 

  25. Saint, S., & Lawson, J. R. (1994). Rules for reaching consensus: A modern approach to decision making. Amsterdam: Pfeiffer.

    Google Scholar 

  26. Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques. Amsterdam: Elsevier.

    Google Scholar 

  27. Huan, J., Wang, W., & Prins, J. Efficient mining of frequent subgraphs in the presence of isomorphism. In Data Mining, 2003. ICDM 2003. Third IEEE International Conference on, 2003 (pp. 549–552). IEEE.

  28. Gudes, E., Shimony, S. E., & Vanetik, N. (2006). Discovering frequent graph patterns using disjoint paths. IEEE Transactions on Knowledge and Data Engineering, 18(11), 1441–1456.

    Article  Google Scholar 

  29. Kang, U., Tsourakakis, C. E., & Faloutsos, C. Pegasus: A peta-scale graph mining system implementation and observations. In Data Mining, 2009. ICDM’09. Ninth IEEE International Conference on, 2009 (pp. 229–238). IEEE.

  30. Inokuchi, A., Washio, T., & Motoda, H. (2000). An apriori-based algorithm for mining frequent substructures from graph data. In PKDD’00: Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery (pp. 13–23). Springer.

  31. Kuramochi, M., & Karypis, G. (2004). An efficient algorithm for discovering frequent subgraphs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1038–1051.

    Article  Google Scholar 

  32. Vanetik, N., Gudes, E., & Shimony, S. E. (2002). Computing frequent graph patterns from semistructured data. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on, 2002 (pp. 458–465). IEEE.

  33. Kuramochi, M., & Karypis, G. (2001). Frequent subgraph discovery. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on, 2001 (pp. 313–320). IEEE.

  34. Tong, H., Faloutsos, C., & Koren, Y. (2007). Fast direction-aware proximity for graph mining. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 747–756). Bridgeton: ACM.

  35. Cheng, L.-C., & Jhang, M.-J. (2012). Applied graph mining technique to discover consensus graphs from group ranking decisions. In Proceedings on the International Conference on Artificial Intelligence (ICAI) (p. 1). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).

Download references

Acknowledgments

The authors are very grateful to the anonymous referees for their helpful comments and valuable suggestions for improving the earlier version of the paper. This research was supported by the Ministry of Science and Technology, Taiwan, R.O.C. under the Grant NSC 100-2410-H-031-010-MY2 and NSC 102-2410-H-031-058-MY3. We appreciate Tsai Hsieh Che to assistant program of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Chen Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, LC., Jhang, MJ. A novel approach to exploring maximum consensus graphs from users’ preference data in a new age environment. Electron Commer Res 15, 543–569 (2015). https://doi.org/10.1007/s10660-015-9199-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-015-9199-y

Keywords

Navigation