Skip to main content
Log in

Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This article illustrates our approach for modeling the solid matrix of biological tissues using reactive constrained mixtures. Several examples are presented to highlight the potential benefits of this approach, showing that seemingly disparate fields of mechanics and chemical kinetics are actually closely interrelated and may be elegantly expressed in a unified framework. Thus, constrained mixture models recover classical theories for fibrous materials with bundles oriented in different directions or having different reference configurations, that produce characteristic fiber recruitment patterns under loading. Reactions that exchange mass among various constituents of a mixture may be used to describe tissue growth and remodeling, which may also alter the material’s anisotropy. Similarly, reactions that describe the breaking and reforming of bonds may be used to model free energy dissipation in a viscoelastic material. Therefore, this framework is particularly well suited for modeling biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. For an infinitesimal strain analysis we may assume that the material and spatial configurations are nearly identical, \(x\approx X^{s}\).

  2. Chemistry textbooks typically adopt temperature and pressure as state variables, so that the Gibbs energy emerges as the natural scalar potential for examining the thermodynamics of reactions. In contrast, our treatment employs temperature and strain (thus, volume) as state variables, so that the Helmholtz free energy emerges as the natural choice of scalar potential.

  3. An explicit dependence of \(E\) on \(\rho_{r}^{\alpha }\) may also be adopted, e.g., assuming that each bundle has the same density \(\rho_{r}^{\alpha }=\rho_{0}/n\), where \(\rho_{0}\) is the mixture density; then, letting \(E ( \rho_{r}^{ \alpha } ) = ( \rho_{r}^{\alpha }/\rho_{0} ) E_{0}\) would reproduce the relation adopted in (3.14b).

References

  1. Armstrong, C.G.: An analysis of the stresses in a thin layer of articular cartilage in a synovial joint. Eng. Med. 15(2), 55–61 (1986)

    Article  Google Scholar 

  2. Armstrong, C.G., Lai, W.M., Mow, V.C.: An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106(2), 165–173 (1984)

    Article  Google Scholar 

  3. Aspden, R.M., Hukins, D.W.: Collagen organization in articular cartilage, determined by X-ray diffraction, and its relationship to tissue function. Proc. R. Soc. Lond. B, Biol. Sci. 212(1188), 299–304 (1981)

    Article  ADS  Google Scholar 

  4. Ateshian, G.A.: On the theory of reactive mixtures for modeling biological growth. Biomech. Model. Mechanobiol. 6(6), 423–445 (2007)

    Article  Google Scholar 

  5. Ateshian, G.A.: Viscoelasticity using reactive constrained solid mixtures. J. Biomech. 48(6), 941–947 (2015)

    Article  Google Scholar 

  6. Ateshian, G.A., Ellis, B.J., Weiss, J.A.: Equivalence between short-time biphasic and incompressible elastic material responses. J. Biomech. Eng. 129(3), 405–412 (2007)

    Article  Google Scholar 

  7. Ateshian, G.A., Morrison, B. III, Holmes, J.W., Hung, C.T.: Mechanics of cell growth. Mech. Res. Commun. 42, 118–125 (2012)

    Article  Google Scholar 

  8. Ateshian, G.A., Rajan, V., Chahine, N.O., Canal, C.E., Hung, C.T.: Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J. Biomech. Eng. 131(6), 061003 (2009)

    Article  Google Scholar 

  9. Ateshian, G.A., Ricken, T.: Multigenerational interstitial growth of biological tissues. Biomech. Model. Mechanobiol. 9(6), 689–702 (2010)

    Article  Google Scholar 

  10. Azeloglu, E.U., Albro, M.B., Thimmappa, V.A., Ateshian, G.A., Costa, K.D.: Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. Am. J. Physiol., Heart Circ. Physiol. 294(3), H1197–H1205 (2008)

    Article  Google Scholar 

  11. Bachrach, N.M., Mow, V.C., Guilak, F.: Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. J. Biomech. 31(5), 445–451 (1998)

    Article  Google Scholar 

  12. Bedford, A., Drumheller, D.S.: Theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21(8), 863–960 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bowen, R.M.: Thermochemistry of reacting materials. J. Chem. Phys. 49(4), 1625–1637 (1968)

    Article  ADS  Google Scholar 

  14. Bryant, M.R., McDonnell, P.J.: A triphasic analysis of corneal swelling and hydration control. J. Biomech. Eng. 120(3), 370–381 (1998)

    Article  Google Scholar 

  15. Carter, D.R., Hayes, W.C.: Bone compressive strength: the influence of density and strain rate. Science 194(4270), 1174–1176 (1976)

    Article  ADS  Google Scholar 

  16. Chahine, N.O., Wang, C.C.-B., Hung, C.T., Ateshian, G.A.: Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. J. Biomech. 37(8), 1251–1261 (2004)

    Article  Google Scholar 

  17. Coleman, B.D., Gurtin, M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597–613 (1967)

    Article  ADS  Google Scholar 

  18. Cowin, S., Hegedus, D.: Bone remodeling. I: Theory of adaptive elasticity. J. Elast. 6(3), 313–326 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cyron, C.J., Aydin, R.C., Humphrey, J.D.: A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue. Biomech. Model. Mechanobiol. 15(6), 1389–1403 (2016)

    Article  Google Scholar 

  20. Eberhardt, A.W., Keer, L.M., Lewis, J.L., Vithoontien, V.: An analytical model of joint contact. J. Biomech. Eng. 112(4), 407–413 (1990)

    Article  Google Scholar 

  21. Eringen, A.C., Ingram, J.D.: A continuum theory of chemically reacting media—I. Int. J. Eng. Sci. 3(2), 197–212 (1965)

    Article  Google Scholar 

  22. Fyhrie, D.P., Carter, D.R.: A unifying principle relating stress to trabecular bone morphology. J. Orthop. Res. 4(3), 304–317 (1986)

    Article  Google Scholar 

  23. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006)

    Article  Google Scholar 

  24. Gleason, R.L., Humphrey, J.D.: Effects of a sustained extension on arterial growth and remodeling: a theoretical study. J. Biomech. 38(6), 1255–1261 (2005)

    Article  Google Scholar 

  25. Gleason, R.L., Taber, L.A., Humphrey, J.D.: A 2-d model of flow-induced alterations in the geometry, structure, and properties of carotid arteries. J. Biomech. Eng. 126(3), 371–381 (2004)

    Article  Google Scholar 

  26. Green, M., Tobolsky, A.: A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 14(2), 80–92 (1946)

    Article  ADS  Google Scholar 

  27. Hill, M.R., Duan, X., Gibson, G.A., Watkins, S., Robertson, A.M.: A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall. J. Biomech. 45(5), 762–771 (2012)

    Article  Google Scholar 

  28. Hori, R.Y., Mockros, L.F.: Indentation tests of human articular cartilage. J. Biomech. 9(4), 259–268 (1976)

    Article  Google Scholar 

  29. Huiskes, R., Weinans, H., Grootenboer, H.J., Dalstra, M., Fudala, B., Slooff, T.J.: Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20(11–12), 1135–1150 (1987)

    Article  Google Scholar 

  30. Humphrey, J., Rajagopal, K.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(03), 407–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech. Model. Mechanobiol. 2(2), 109–126 (2003)

    Article  Google Scholar 

  32. Hurschler, C., Loitz-Ramage, B., Vanderby, R. Jr.: A structurally based stress-stretch relationship for tendon and ligament. J. Biomech. Eng. 119(4), 392–399 (1997)

    Article  Google Scholar 

  33. Karsaj, I., Humphrey, J.D.: A mathematical model of evolving mechanical properties of intraluminal thrombus. Biorheology 46(6), 509–527 (2009)

    Google Scholar 

  34. Kenyon, D.E.: The theory of an incompressible solid-fluid mixture. Arch. Ration. Mech. Anal. 62(2), 131–147 (1976)

    MathSciNet  MATH  Google Scholar 

  35. Lake, S.P., Miller, K.S., Elliott, D.M., Soslowsky, L.J.: Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J. Orthop. Res. 27(12), 1596–1602 (2009)

    Article  Google Scholar 

  36. Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J. Biomech. 12(6), 423–436 (1979)

    Article  Google Scholar 

  37. Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16(1), 1–12 (1983)

    Article  Google Scholar 

  38. Mak, A.F., Lai, W.M., Mow, V.C.: Biphasic indentation of articular cartilage—I: Theoretical analysis. J. Biomech. 20(7), 703–714 (1987)

    Article  Google Scholar 

  39. Mansour, J.M., Mow, V.C.: The permeability of articular cartilage under compressive strain and at high pressures. J. Bone Jt. Surg., Am. Vol. 58(4), 509–516 (1976)

    Article  Google Scholar 

  40. Maroudas, A., Bannon, C.: Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans. Biorheology 18(3–6), 619–632 (1981)

    Google Scholar 

  41. Mow, V., Kuei, S., Lai, W., Armstrong, C.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1), 73–84 (1980)

    Article  Google Scholar 

  42. Nims, R.J., Durney, K.M., Cigan, A.D., Dusséaux, A., Hung, C.T., Ateshian, G.A.: Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering. Interface Focus 6(1), 20150063 (2016)

    Article  Google Scholar 

  43. Oloyede, A., Broom, N.D.: Is classical consolidation theory applicable to articular cartilage deformation? Clin. Biomech. 6(4), 206–212 (1991)

    Article  Google Scholar 

  44. Park, S., Krishnan, R., Nicoll, S.B., Ateshian, G.A.: Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 36(12), 1785–1796 (2003)

    Article  Google Scholar 

  45. Pierce, D.M., Ricken, T., Holzapfel, G.A.: Modeling sample/patient-specific structural and diffusional responses of cartilage using dt-mri. Int. J. Numer. Methods Biomed. Eng. 29(8), 807–821 (2013)

    Article  Google Scholar 

  46. Prud’homme, R.: Flows of Reactive Fluids. Fluid Mechanics and Its Applications, vol. 94. Springer, New York (2010)

    Book  MATH  Google Scholar 

  47. Rachev, A., Gleason, R.L. Jr.: Theoretical study on the effects of pressure-induced remodeling on geometry and mechanical non-homogeneity of conduit arteries. Biomech. Model. Mechanobiol. 10(1), 79–93 (2011)

    Article  Google Scholar 

  48. Sacks, M.S.: Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 125(2), 280–287 (2003)

    Article  Google Scholar 

  49. Satha, G., Lindström, S.B., Klarbring, A.: A goal function approach to remodeling of arteries uncovers mechanisms for growth instability. Biomech. Model. Mechanobiol. 13(6), 1243–1259 (2014)

    Article  Google Scholar 

  50. Seyedsalehi, S., Zhang, L., Choi, J., Baek, S.: Prior distributions of material parameters for Bayesian calibration of growth and remodeling computational model of abdominal aortic wall. J. Biomech. Eng. 137(10), 101001 (2015)

    Article  Google Scholar 

  51. Soares, J.S., Sacks, M.S.: A triphasic constrained mixture model of engineered tissue formation under in vitro dynamic mechanical conditioning. Biomech. Model. Mechanobiol. 15(2), 293–316 (2016)

    Article  Google Scholar 

  52. Soltz, M.A., Ateshian, G.A.: Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J. Biomech. 31(10), 927–934 (1998)

    Article  Google Scholar 

  53. Soltz, M.A., Ateshian, G.A.: Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann. Biomed. Eng. 28(2), 150–159 (2000)

    Article  Google Scholar 

  54. Timoshenko, S., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  55. Tinoco, I., Sauer, K., Wang, J.C.: Physical Chemistry: Principles and Applications in Biological Sciences, 3rd edn. Prentice-Hall, Englewood Cliffs (1995)

    Google Scholar 

  56. Torzilli, P., Askari, E., Jenkins, J.: Water content and solute diffusion properties in articular cartilage. In: Biomechanics of Diarthrodial Joints, vol. I, pp. 363–390. Springer, Berlin (1990)

    Chapter  Google Scholar 

  57. Urban, J.P., Maroudas, A.: Swelling of the intervertebral disc in vitro. Connect. Tissue Res. 9(1), 1–10 (1981)

    Article  Google Scholar 

  58. Valentín, A., Holzapfel, G.A.: Constrained mixture models as tools for testing competing hypotheses in arterial biomechanics: a brief survey. Mech. Res. Commun. 42, 126–133 (2012)

    Article  Google Scholar 

  59. Vernerey, F.J., Farsad, M.: A constrained mixture approach to mechano-sensing and force generation in contractile cells. J. Mech. Behav. Biomed. Mater. 4(8), 1683–1699 (2011)

    Article  Google Scholar 

  60. Wagenseil, J.E.: A constrained mixture model for developing mouse aorta. Biomech. Model. Mechanobiol. 10(5), 671–687 (2011)

    Article  Google Scholar 

  61. Wan, W., Hansen, L., Gleason, R.L. Jr.: A 3-d constrained mixture model for mechanically mediated vascular growth and remodeling. Biomech. Model. Mechanobiol. 9(4), 403–419 (2010)

    Article  Google Scholar 

  62. Wang, J., Zhou, B., Liu, X.S., Fields, A.J., Sanyal, A., Shi, X., Adams, M., Keaveny, T.M., Guo, X.E.: Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone 72, 71–80 (2015)

    Article  Google Scholar 

  63. Weinans, H., Huiskes, R., Grootenboer, H.J.: The behavior of adaptive bone-remodeling simulation models. J. Biomech. 25(12), 1425–1441 (1992)

    Article  Google Scholar 

  64. Wineman, A.: On the mechanics of elastomers undergoing scission and cross-linking. Int. J. Adv. Eng. Sci. Appl. Math. 1(2–3), 123–131 (2009)

    Article  Google Scholar 

  65. Wong, M., Ponticiello, M., Kovanen, V., Jurvelin, J.S.: Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J. Biomech. 33(9), 1049–1054 (2000)

    Article  Google Scholar 

  66. Wu, J., Shadden, S.C.: Stability analysis of a continuum-based constrained mixture model for vascular growth and remodeling. Biomech. Model. Mechanobiol. 15(6), 1669–1684 (2016)

    Article  Google Scholar 

  67. Zeinali-Davarani, S., Wang, Y., Chow, M.-J., Turcotte, R., Zhang, Y.: Contribution of collagen fiber undulation to regional biomechanical properties along porcine thoracic aorta. J. Biomech. Eng. 137(5), 051001 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institutes of Health under Award Number R01 GM083925. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard A. Ateshian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nims, R.J., Ateshian, G.A. Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues. J Elast 129, 69–105 (2017). https://doi.org/10.1007/s10659-017-9630-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-017-9630-9

Keywords

Mathematics Subject Classification (2010)

Navigation