Skip to main content
Log in

On Backus Average for Generally Anisotropic Layers

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper, following the Backus (in J. Geophys. Res. 67(11):4427–4440, 1962) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus (1962) for the case of isotropic and transversely isotropic layers.

In the over half-a-century since the publications of Backus (1962) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of the mathematical underpinnings of the original formulation; hence this paper.

We prove that—within the long-wave approximation—if the thin layers obey stability conditions, then so does the equivalent medium. We examine—within the Backus-average context—the approximation of the average of a product as the product of averages, which underlies the averaging process.

In the presented examination we use the expression of Hooke’s law as a tensor equation; in other words, we use Kelvin’s—as opposed to Voigt’s—notation. In general, the tensorial notation allows us to conveniently examine effects due to rotations of coordinate systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, D.L.: Elastic wave propagation in layered anisotropic media. J. Geophys. Res. 66, 2953–2964 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  2. Backus, G.E.: Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 67(11), 4427–4440 (1962)

    Article  ADS  Google Scholar 

  3. Berryman, J.G.: Range of the \(P\)-wave anisotropy parameter for finely layered VTI media. Stanf. Explor. Proj. 93, 179–192 (1997)

    Google Scholar 

  4. Bond, W.L.: The mathematics of the physical properties of crystals. Bell Syst. Tech. J. 22, 1–72 (1943)

    Article  MathSciNet  Google Scholar 

  5. Brisco, C.: Anisotropy vs. inhomogeneity: algorithm formulation, coding and modelling, Honours Thesis, Memorial University (2014)

  6. Carcione, J.M., Picotti, S., Cavallini, F., Santos, J.E.: Numerical test of the Schoenberg-Muir theory. Geophysics 77(2), C27–C35 (2012)

    Article  Google Scholar 

  7. Chapman, C.H.: Fundamentals of Seismic Wave Propagation. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  8. Dalton, D., Slawinski, M.A.: On Backus average for oblique incidence (2016). arXiv:1601.02966v1 [physics.geo-ph]

  9. Danek, T., Kochetov, M., Slawinski, M.A.: Effective elasticity tensors in the context of random errors. J. Elast. 121(1), 55–67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Danek, T., Slawinski, M.A.: Backus average under random perturbations of layered media. SIAM J. Appl. Math. 76(4), 1239–1249 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gazis, D.C., Tadjbakhsh, I., Toupin, R.A.: The elastic tensor of given symmetry nearest to an anisotropic elastic tensor. Acta Crystallogr. 16(9), 917–922 (1963)

    Article  MathSciNet  Google Scholar 

  12. Haskell, N.A.: Dispersion of surface waves on multilayered media. Bull. Seismol. Soc. Am. 43, 17–34 (1953)

    MathSciNet  Google Scholar 

  13. Helbig, K.: Elastischen Wellen in anisotropen Medien. Getlands Beitr. Geophys. 67, 256–288 (1958)

    Google Scholar 

  14. Helbig, K.: Layer-induced anisotropy: forward relations between constituent parameters and compound parameters. Rev. Bras. Geofís. 16(2–3), 103–114 (1998)

    Article  Google Scholar 

  15. Helbig, K.: Inversion of compound parameters to constituent parameters. Rev. Bras. Geofís. 18(2), 173–185 (2000)

    Google Scholar 

  16. Helbig, K., Schoenberg, M.: Anomalous polarization of elastic waves in transversely isotropic media. J. Acoust. Soc. Am. 81(5), 1235–1245 (1987)

    Article  ADS  Google Scholar 

  17. Kumar, D.: Applying Backus averaging for deriving seismic anisotropy of a long-wavelength equivalent medium from well-log data. J. Geophys. Eng. 10, 1–15 (2013)

    Google Scholar 

  18. Postma, G.W.: Wave propagation in a stratified medium. Geophysics 20, 780–806 (1955)

    Article  ADS  Google Scholar 

  19. Riznichenko, Yu.Y.: On seismic anisotropy. Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 13, 518–544 (1949)

    Google Scholar 

  20. Rudzki, M.P.: Parametrische Darstellung der elastischen Wellen in anisotropischen Medie. Bull. Acad. Cracovie 503 (1911)

  21. Rytov, S.M.: The acoustical properties of a finely layered medium. Akust. ž. 2, 71 (1956). See also Sov. Phys. Acoust. 2, 67 (1956)

    MathSciNet  Google Scholar 

  22. Schoenberg, M., Muir, F.: A calculus for finely layered anisotropic media. Geophysics 54(5), 581–589 (1989)

    Article  ADS  Google Scholar 

  23. Shermergor, T.: Theory of Elasticity of Microinhomogeneous Media. Nauka, Moscow (1977). In Russian

    Google Scholar 

  24. Slawinski, M.A.: Waves and Rays in Seismology: Answers to Unasked Questions. World Scientific, Singapore (2016)

    Book  Google Scholar 

  25. Slawinski, M.A.: Waves and Rays in Elastic Continua. World Scientific, Singapore (2015)

    Book  MATH  Google Scholar 

  26. Tiwary, D.K.: Mathematical modelling and ultrasonic measurement of shale anisotropy and a comparison of upscaling methods from sonic to seismic. Ph.D. thesis, University of Oklahoma (2007)

  27. Thomson, W.T.: Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 21, 80–93 (1950)

    ADS  MathSciNet  MATH  Google Scholar 

  28. White, J.E., Angona, F.A.: Elastic wave velocities in laminated media. J. Acoust. Soc. Am. 27, 310–317 (1955)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge discussions with George Backus, Klaus Helbig, Mikhail Kochetov and Michael Rochester. Also, we wish to acknowledge insightful comments of an anonymous reviewer and proofreading by Elena Patarini. This research was performed in the context of The Geomechanics Project supported by Husky Energy. Also, this research was partially supported by the Natural Sciences and Engineering Research Council of Canada, grant 238416-2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Slawinski.

Appendices

Appendix A: Average of Derivatives (Lemma 1)

Proof

We begin with the definition of averaging,

$$ \overline{f}(x_{3}):= \int _{-\infty}^{\infty}w(\xi-x_{3})f( \xi)\mathrm{d} \xi. $$
(12)

We make the nonrestrictive assumption that \(f(\xi)\) is sufficiently regular to be able to perform the standard calculus operations that we make below. The derivatives with respect to \(x_{1}\) and \(x_{2}\) can be written as

$$\begin{aligned} \begin{aligned} \frac{\partial\overline{f}}{\partial x_{i}} &=\frac{\partial}{ \partial x_{i}} \int _{-\infty}^{\infty}w(\xi-x_{3})f(x_{1},x _{2},\xi)\mathrm{d}\xi \\ &= \int _{-\infty}^{\infty}w(\xi-x_{3})\frac{\partial f(x _{1},x_{2},\xi)}{\partial x_{i}} \mathrm{d}\xi=:\overline{\frac{ \partial f}{\partial x_{i}}} , \quad i=1,2 , \end{aligned} \end{aligned}$$

where the last equality is the statement of definition (12), as required. For the derivatives with respect to \(x_{3}\), we need to verify that

$$ \frac{\partial}{\partial x_{3}} \int _{-\infty}^{\infty}w( \xi-x_{3})f(x_{1},x_{2}, \xi)\mathrm{d}\xi= \int _{-\infty} ^{\infty}w(\xi-x_{3})\frac{\partial f(x_{1},x_{2},\xi )}{\partial \xi} \mathrm{d}\xi. $$
(13)

Applying integration by parts, we write the right-hand side as

$$ w(\xi-x_{3})f(x_{1},x_{2},\xi)|_{-\infty}^{\infty}- \int _{-\infty}^{\infty}w'(\xi-x_{3}) f(x_{1},x_{2},\xi) \mathrm{d}\xi, $$

where \(w\) is a function of a single variable. Since

$$ \lim_{x_{3}\rightarrow\pm\infty}w(x_{3})=0 , $$

the product of \(w\) and \(f\) vanishes at \(\pm\infty\), and we are left with

$$ - \int _{-\infty}^{\infty}w'(\xi-x_{3}) f(x_{1},x_{2},\xi) \mathrm{d}\xi. $$

Let us consider the left-hand side of expression (13). Since only \(w\) is a function of \(x_{3}\), we can interchange the operations of integration and differentiation to write

$$ - \int _{-\infty}^{\infty}w'(\xi-x_{3}) f(x_{1},x_{2},\xi) \mathrm{d}\xi; $$

the negative sign arises from the chain rule,

$$ \frac{\partial w(\xi-x_{3})}{\partial x_{3}} =w'(\xi-x_{3})\frac{ \partial(\xi-x_{3})}{\partial x_{3}} =-w'(\xi-x_{3}) . $$

Thus, both sides of expression (13) are equal to one another, as required. In other words,

$$ \frac{\partial\overline{f}}{\partial x_{3}} = \overline{\frac{ \partial f}{\partial x_{3}}} , $$

which completes the proof. □

Appendix B: Stability of Equivalent Medium (Lemma 2)

Proof

The stability of layers means that their deformation requires work. Mathematically, it means that, for each layer,

$$ W=\frac{1}{2} \sigma\cdot\varepsilon>0 , $$

where \(W\) stands for work, and \(\sigma\) and \(\varepsilon\) denote the stress and strain tensors, respectively, which are expressed as columns in (4): \(\sigma=C\varepsilon\). As an aside, we can say that, herein, \(W>0\) is equivalent to the positive definiteness of \(C\), for each layer.

Performing the average of \(W\) over all layers and using—in the scalar product—the fact that the average of a sum is the sum of averages, we write

$$ \overline{W}=\frac{1}{2} \overline{\sigma\cdot\varepsilon} >0 . $$

Thus, \(W>0\implies\overline{W}>0\).

Let us proceed to show that this implication—in turn—entails the stability of the equivalent medium, which is tantamount to the positive definiteness of \(\langle C\rangle\).

Following Lemma 3—if one of two functions is nearly constant—we can approximate the average of their product by the product of their averages,

$$ \overline{W}=\frac{1}{2} \overline{\sigma}\cdot \overline{\varepsilon} >0 . $$
(14)

Herein, we use the property stated in Sect. 2.4 that \(\sigma_{i3}\), where \(i\in\{1,2,3\}\), are constant, and \(\varepsilon_{11}\), \(\varepsilon_{12}\) and \(\varepsilon_{22}\) vary slowly, along the \(x_{3}\)-axis, together with Lemma 3, which can be invoked due to the fact that each product in expression (14) is such that one function is nearly constant and the other possibly varies more rapidly.

By definition of Hooke’s law, \(\overline{\sigma}:=\langle C\rangle \overline{\varepsilon}\), expression (14) can be written as

$$ \frac{1}{2} \bigl( \langle C\rangle\overline{\varepsilon} \bigr) \cdot\overline{\varepsilon} >0 , \quad\forall \overline{ \varepsilon}\neq0 , $$

which means that \(\langle C\rangle\) is positive-definite, and which—in view of this derivation—proves that the equivalent medium inherits the stability of individual layers. □

Appendix C: Approximation of Product (Lemma 3)

For a fixed \(x_{3}\), we may set \(W(\zeta):=w(\zeta-x_{3})\). Then, \(W\geq0\) and \(\int_{-\infty}^{\infty}W(\zeta)\mathrm{d}\zeta =1\). With this notation, (3) becomes

$$\overline{f}:= \int _{-\infty}^{\infty}f(x)W(x)\mathrm{d}x . $$

Similarly,

$$ \overline{g}:= \int _{-\infty}^{\infty}g(x)W(x)\mathrm{d}x \quad\mbox{and} \quad\overline{fg}:= \int _{-\infty}^{\infty}f(x)g(x)W(x) \mathrm{d}x. $$

Proposition 1

Suppose that the first derivatives of \(f\) and \(g\) are uniformly bounded; that is, both

$$ \bigl\| f'\bigr\| _{\infty}:=\sup_{-\infty< x< \infty}\bigl|f'(x)\bigr| \quad \textit{and} \quad\bigl\| g'\bigr\| _{\infty}:=\sup_{-\infty< x< \infty}\bigl|g'(x)\bigr| $$

are finite. Then, we have

$$|{\overline{fg}}-{\overline{f}} {\overline{g}}|\leq2\bigl(\ell '\bigr)^{2} \bigl\| f'\bigr\| _{\infty} \bigl\| g'\bigr\| _{\infty}. $$

Proof

We may calculate

$$\begin{aligned} \begin{aligned} &\int _{-\infty}^{\infty} \bigl( f(x)-\overline{f} \bigr) \bigl( g(x)- \overline{g} \bigr) W(x)\mathrm{d}x \\ &\quad= \int _{-\infty}^{\infty}f(x)g(x)W(x)\mathrm{d}x- \overline{f} \int _{-\infty}^{\infty}g(x)W(x)\mathrm{d}x \\ &\qquad{}- \overline{g} \int _{-\infty}^{\infty}f(x)W(x)\mathrm{d}x+ \int _{-\infty}^{\infty}\overline{f}\overline{g}W(x) \mathrm{d}x \\ &\quad= \overline{fg}-\overline{f} \int _{-\infty}^{\infty}g(x) W(x)\mathrm{d}x -\overline{g} \int _{-\infty}^{\infty}f(x)W(x) \mathrm{d}x+\overline{f} \overline{g} \\ &\quad=\overline{fg}-\overline{f} \overline{g}-\overline{g} \overline{f}+ \overline{f} \overline{g}= \overline{fg}-\overline{f} \overline{g} ; \end{aligned} \end{aligned}$$

that is,

$$ \overline{fg}-\overline{f} \overline{g} = \int _{-\infty} ^{\infty} \bigl( f(x)-\overline{f} \bigr) \bigl( g(x)-\overline{g} \bigr) W(x) \mathrm{d}x. $$
(15)

Now,

$$f(x)-\overline{f}=f(x)- \int _{-\infty}^{\infty}f(y)W(y) \mathrm{d}y = \int _{-\infty}^{\infty} \bigl( f(x)-f(y) \bigr) W(y) \mathrm{d}y , $$

so that

$$ \bigl|f(x)-\overline{f}\bigr|\leq\bigl\| f'\bigr\| _{\infty} \int _{-\infty} ^{\infty}|x-y|W(y)\mathrm{d}y , $$
(16)

and hence, by the Cauchy-Schwartz inequality,

$$\bigl|f(x)-\overline{f}\bigr|^{2}\leq\bigl\| f'\bigr\| _{\infty}^{2} \int _{-\infty}^{\infty}|x-y|^{2}W(y)\mathrm{d}y \int _{-\infty}^{\infty}1^{2}W(y)\mathrm{d}y= \bigl\| f'\bigr\| _{\infty} ^{2} \int _{-\infty}^{\infty}|x-y|^{2}W(y)\mathrm{d}y. $$

Thus,

$$\begin{aligned} \int _{-\infty}^{\infty}\bigl|f(x)-\overline{f}\bigr|^{2}W(x) \mathrm{d}x & \leq\bigl\| f'\bigr\| _{\infty}^{2} \int _{-\infty}^{\infty} \int _{-\infty}^{\infty}|x-y|^{2}W(x)W(y)\mathrm{d}x \mathrm{d}y \\ &= \bigl\| f'\bigr\| _{\infty}^{2} \int _{-\infty}^{\infty} \int _{-\infty}^{\infty}\bigl(x^{2}-2xy+y^{2} \bigr)W(x)W(y)\mathrm{d}x \mathrm{d}y \\ &= \bigl\| f'\bigr\| _{\infty}^{2} \biggl( 2 \int _{-\infty}^{\infty}x ^{2}W(x)\mathrm{d}x-2 \biggl( \int _{-\infty}^{\infty}xW(x) \mathrm{d}x \biggr) ^{2} \biggr) . \end{aligned}$$

It follows, by the Cauchy-Schwartz inequality applied to (15), that

$$\begin{aligned} |\overline{fg}-\overline{f} \overline{g}|^{2} &\leq \int _{-\infty}^{\infty}\bigl|f(x)-\overline{f}\bigr|^{2}W(x) \mathrm{d}x \int _{-\infty}^{\infty}\bigl|g(x)-\overline{g}\bigr|^{2}W(x) \mathrm{d}x \\ &\leq\bigl\| f'\bigr\| _{\infty}^{2} \bigl\| g'\bigr\| _{\infty}^{2} \biggl( 2 \int _{-\infty}^{\infty}x^{2}W(x)\mathrm{d}x-2 \biggl( \int _{-\infty}^{\infty}xW(x)\mathrm{d}x \biggr) ^{2} \biggr) ^{2} . \end{aligned}$$

Note that

$$\int _{-\infty}^{\infty}xW(x)\mathrm{d}x= \int _{-\infty}^{ \infty}xw(x-x_{3})\mathrm{d}x = \int _{-\infty}^{\infty}(x+x _{3})w(x) \mathrm{d}x=x_{3}, $$

using the defining properties of \(w(\zeta)\). Similarly

$$\int _{-\infty}^{\infty}x^{2}W(x)\mathrm{d}x= \int _{-\infty}^{\infty}x^{2}w(x-x_{3}) \mathrm{d}x= \int _{-\infty}^{\infty}(x+x_{3})^{2}w(x) \mathrm{d}x=\bigl(\ell'\bigr)^{2}+x _{3}^{2} . $$

Consequently,

$$2 \int _{-\infty}^{\infty}x^{2}W(x)\mathrm{d}x-2 \biggl( \int _{-\infty}^{\infty}xW(x)\mathrm{d}x \biggr) ^{2}=2\bigl(\bigl( \ell'\bigr)^{2}+x_{3}^{2}-x_{3}^{2} \bigr)=2\bigl(\ell'\bigr)^{2} $$

and we have

$$|\overline{fg}-\overline{f} \overline{g}|\le2\bigl(\ell' \bigr)^{2}\bigl\| f'\bigr\| _{\infty}\bigl\| g' \bigr\| _{\infty}, $$

as claimed. □

Hence, if \(f\) and \(g\) are nearly constant, which means that \(\|f'\|_{\infty}\) and \(\|g'\|_{\infty}\) are small, then \(\overline{fg}\approx\overline{f} \overline{g}\).

Corollary 1

Since the error estimate involves the product of the norms of the derivatives, it follows that if one of them is small enough and the other is not excessively large, then their product can be small enough for the approximation, \(\overline{fg}\approx\overline{f} \overline{g}\), to hold.

The exact accuracy of this property will be examined further by numerical methods in a future publication.

If \(g(x)\geq0\), we can say more, even if \(g(x)\) is wildly varying. If \(f\) is continuous and \(g(x)\geq0\), then, by the Mean-value Theorem for Integrals,

$$\overline{fg}= \int _{-\infty}^{\infty}f(x)g(x)W(x)\mathrm{d}x=f(c) \int _{-\infty}^{\infty}g(x)W(x)\mathrm{d}x=f(c) \overline{g} , $$

for some \(c\). Hence,

$$\overline{fg}-\overline{f}\overline{g}=f(c)\overline{g}- \overline {f} \overline{g}= \bigl(f(c)-\overline{f}\bigr)\overline{g}. $$

This implies that

$$|\overline{fg}-\overline{f}\overline{g}|\leq\bigl|f(c)- \overline {f}\bigr| \overline{g} \leq\bigl\| f'\bigr\| _{\infty} \biggl( \int _{-\infty}^{\infty}|x-y|W(y)\mathrm{d}y \biggr) \overline{g} . $$

Hence, even for \(g\) wildly varying—as long as \(\overline{g}\) is not too big in relation to \(\|f'\|_{\infty}\)—it is still the case that the average of the product is close to the product of the averages. A bound on \({\int_{-\infty}^{\infty}|x-y|W(y)\mathrm{d}y}\) would depend on the weight function, \(w\), used.

An alternative estimate is provided by the following proposition.

Proposition 2

Suppose that \(m:=\inf f(x)>-\infty\) and \(M:=\sup_{-\infty < x<\infty}f(x)<\infty\) and \({\sup_{-\infty< x<\infty }|g(x)|<\infty}\). Then,

$$ |\overline{fg}-\overline{f}\overline{g}|\leq\Bigl( \sup _{-\infty< x< \infty}\bigl|g(x)\bigr| \Bigr) (M-m). $$

Proof

$$ \overline{fg}= \int _{-\infty}^{\infty}f(x)g(x)W(x)\mathrm{d}x = \int _{-\infty}^{\infty}\bigl(f(x)-m\bigr)g(x)W(x) \mathrm{d}x+m \int _{-\infty}^{\infty}g(x)W(x)\mathrm{d}x, $$

which—by the definition of the average—is

$$ \overline{fg} = \int _{-\infty}^{\infty}\bigl(f(x)-m\bigr)g(x)W(x) \mathrm{d}x+m\overline{g} . $$

Hence,

$$\begin{aligned} |\overline{fg}-\overline{f}\overline{g}| &= \biggl\vert \int _{-\infty}^{\infty}\bigl(f(x)-m\bigr)g(x)W(x)\mathrm{d}x+ ( m- \overline{f} ) \overline{g}\biggr\vert \\ &\leq \Bigl( \sup _{-\infty< x< \infty}\bigl|g(x)\bigr| \Bigr) \int _{-\infty}^{\infty}\bigl(f(x)-m\bigr)W(x)\mathrm{d}x+ \vert m- \overline{f}\vert |\overline{g}| \\ &= \Bigl( \sup _{-\infty< x< \infty}\bigl|g(x)\bigr| \Bigr) ( \overline{f}-m ) + ( \overline{f}-m ) |\overline{g}| \\ &\leq2 \Bigl( \sup _{-\infty< x< \infty}\bigl|g(x)\bigr| \Bigr) ( \overline{f}-m ) . \end{aligned}$$
(17)

Similarly,

$$ |\overline{fg}-\overline{f}\overline{g}|\leq 2 \Bigl( \sup _{-\infty< x< \infty}\bigl|g(x)\bigr| \Bigr) ( M-\overline{f} ) . $$
(18)

Taking the average of expressions (17) and (18), we obtain

$$\begin{aligned} |\overline{fg}-\overline{f}\overline{g}|&\leq 2 \Bigl( \sup _{-\infty< x< \infty}\bigl|g(x)\bigr| \Bigr) \frac{ ( \overline{f}-m ) + ( M-\overline{f} ) }{2} \\ &= \Bigl( \sup _{-\infty< x< \infty}\bigl|g(x)\bigr| \Bigr) (M-m) , \end{aligned}$$

as required. □

Consequently, if \(f(x)\) is almost constant—which means that \(m\approx M\)—then \(\overline{fg}\approx\overline{f}\overline{g}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bos, L., Dalton, D.R., Slawinski, M.A. et al. On Backus Average for Generally Anisotropic Layers. J Elast 127, 179–196 (2017). https://doi.org/10.1007/s10659-016-9608-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-016-9608-z

Keywords

Mathematics Subject Classification

Navigation