Skip to main content
Log in

Diffusion in Mixtures of Reacting Thermoelastic Solids

Journal of Elasticity Aims and scope Submit manuscript

Abstract

A chemically reacting mixture of elastic solids is considered. As a constitutive assumption, the peculiar functions (such as the free energy, the entropy, and the stress) of a constituent are taken to be functions of a set of variables pertaining to that constituent. The interaction terms, namely the growth of mass, linear momentum, and energy, are allowed to depend on the set of variables pertaining to all of the constituents. While the dependence on the mass density is usually disregarded, the paper accounts also for such a dependence, which seems to be in order especially in connection with reacting mixtures where the mass densities change also in the reference configuration. The thermodynamic restrictions are derived by starting from the non-negative value of the sum of entropy growths and involving the properties of the peculiar functions. The results so obtained for stresses and chemical potentials are examined in connection with similar schemes (swelling solids). While the correct relations for the mass diffusion flux arise from balance equations, an analysis is given of whether and how Fick-type models are acceptable possibly depending on the fluid or solid character of the mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. Denoted also by \(\rho_{\alpha R}\) or \(\rho_{\alpha}^{0}\) in the literature [6, 7].

  2. Similar integral statements of balance equations are given in [21] to account for diffusion through a control volume around a gas-film interface.

References

  1. Araujo, R.P., McElwain, D.L.S.: A mixture theory for the genesis of residual stresses in growing tissues I: a general formulation. SIAM J. Appl. Math. 65, 1261–1284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baek, S., Srinivasa, A.R.: Diffusion of a fluid through an elastic solid undergoing large deformation. Int. J. Non-Linear Mech. 39, 201–218 (2004)

    Article  MATH  Google Scholar 

  3. Bi, Z., Sekerka, R.F.: Phase-field model of solidification of a binary alloy. Physica A 261, 95–106 (1998)

    Article  ADS  Google Scholar 

  4. Bowen, R.M.: Toward a thermodynamics and mechanics of mixtures. Arch. Ration. Mech. Anal. 24, 370–403 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bowen, R.M.: The thermochemistry of a reacting mixture of elastic materials with diffusion. Arch. Ration. Mech. Anal. 34, 97–110 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics 3. Academic Press, New York (1976)

    Google Scholar 

  7. Bowen, R.M., Wiese, J.C.: Diffusion in mixtures of elastic materials. Int. J. Eng. Sci. 7, 689–722 (1969)

    Article  MATH  Google Scholar 

  8. Buonsanti, M., Fosdick, R., Royer-Carfagni, G.: Chemomechanical equilibrium of bars. J. Elast. 84, 167–188 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cahn, J.C.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Article  Google Scholar 

  10. Carlson, D.E.: Linear thermoelasticity. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VIa/2. Springer, New York (1972)

    Google Scholar 

  11. De Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (1984)

    Google Scholar 

  12. Echebarria, B., Folch, R., Karma, A., Plapp, M.: Quantitative phase-field model of alloy solidification. Phys. Rev. E 70, 061604 (2004)

    Article  ADS  Google Scholar 

  13. Fried, E., Gurtin, M.E.: Coherent solid-state phase transitions with atomic diffusion: a thermomechanical treatment. J. Stat. Phys. 95, 1361–1427 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fried, E., Sellers, S.: Theory for atomic diffusion on fixed and deformable crystal lattices. J. Elast. 59, 67–81 (2000)

    Article  MATH  Google Scholar 

  15. Gandhi, M.V., Rajagopal, K.R., Wineman, A.S.: Some nonlinear diffusion problems within the context of the theory of interacting continua. Int. J. Eng. Sci. 25, 1441–1457 (1987)

    Article  MATH  Google Scholar 

  16. Green, A.E., Naghdi, P.M.: On basic equations for mixtures. Q. J. Mech. Appl. Math. 22, 427–438 (1969)

    Article  MATH  Google Scholar 

  17. Gurtin, M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1992)

    ADS  MathSciNet  Google Scholar 

  18. Heida, M., Málek, J., Rajagopal, K.R.: On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework. Z. Angew. Math. Phys. 63, 145–169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1954)

    MATH  Google Scholar 

  20. Iesan, D.: On the theory of mixtures of elastic solids. J. Elast. 35, 251–268 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jabbour, M.E., Bhattacharya, K.: A continuum theory of multispecies thin solid film growth by chemical vapor deposition. J. Elast. 73, 13–74 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Klisch, S.M.: A mixture of elastic materials with different constituent temperatures and internal constraints. Int. J. Eng. Sci. 40, 805–828 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. Ser. A 454, 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mielke, A.: Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions. Discrete Contin. Dyn. Syst., Ser. S 6, 479–499 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Morro, A.: Phase-field models for fluid mixtures. Math. Comput. Model. 45, 1042–1052 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Morro, A.: Governing equations in non-isothermal diffusion. Int. J. Non-Linear Mech. 55, 90–97 (2013)

    Article  ADS  Google Scholar 

  27. Morro, A.: Balance and constitutive equations for diffusion in mixtures of fluids. Meccanica 49, 2109–2123 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Müller, I.: A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28, 1–39 (1968)

    Article  MATH  Google Scholar 

  29. Müller, I.: Thermodynamics of mixtures of fluids. J. Méc. 14, 267–303 (1975)

    MATH  Google Scholar 

  30. Müller, I.: Thermodynamics of mixtures and phase field theory. Int. J. Solids Struct. 38, 1105–1113 (2001)

    Article  MATH  Google Scholar 

  31. Passman, S.L., Nunziato, J.W.: A theory of multiphase mixtures. In: Truesdell, C. (ed.) Rational Thermodynamics. Springer, New-York (1984)

    Google Scholar 

  32. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World Scientific, Singapore (1996)

    Google Scholar 

  33. Sekerka, R.F.: Similarity solutions for a binary diffusion couple with diffusivity and density dependent on composition. Prog. Mater. Sci. 49, 511–536 (2004)

    Article  Google Scholar 

  34. Shi, J.J.-J., Rajagopal, K.R., Wineman, A.S.: Applications of the theory of interacting continua to the diffusion of a fluid through a non-linear elastic media. Int. J. Eng. Sci. 19, 871–889 (1981)

    Article  MATH  Google Scholar 

  35. Truesdell, C.: Rational Thermodynamics. Springer, New York (1984), Chap. 5

    Book  MATH  Google Scholar 

  36. Truesdell, C., Noll, W.: The non-linear field theory of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3, pp. 17–19. Springer, Berlin (1965)

    Google Scholar 

  37. Volokh, K.Y.: Stresses in growing soft tissues. Acta Biomater. 2, 493–504 (2006)

    Article  Google Scholar 

  38. Wheeler, A.A., Boettinger, W.J., McFadden, G.B.: Phase-field model for isothermal phase transitions in binary alloys. Phys. Rev. A 45, 7424–7439 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to this paper has been developed under the auspices of INDAM (Italy). The author is grateful to an anonymous reviewer for helpful comments on an earlier version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Morro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morro, A. Diffusion in Mixtures of Reacting Thermoelastic Solids. J Elast 123, 59–84 (2016). https://doi.org/10.1007/s10659-015-9547-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-015-9547-0

Keywords

Mathematics Subject Classification (2010)

Navigation