Skip to main content
Log in

On Cesàro-Volterra Method in Orthotropic Saint-Venant Beam

  • Classroom Note
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The linearly elastic and orthotropic Saint-Venant beam model, with a spatially constant Poisson tensor and fiberwise homogeneous elastic moduli, is investigated by a coordinate-free approach. A careful reasoning reveals that the elastic strain, fulfilling the whole set of differential conditions of integrability and a differential condition imposed by equilibrium, is defined on the whole ambient space in which the beam is immersed. At this stage the shape of the beam cross-section is inessential and Cesàro-Volterra formula provides the general integral of the differential conditions of kinematic compatibility. The cross-section geometrical shape comes into play only when differential and boundary equilibrium conditions are imposed to evaluate the warping displacement field. The treatment of an orthotropic Saint-Venant beam is applied to investigate about the locations of the shear and twist centres. It is shown that the position of the shear centre can be expressed in terms of the sole cross-section twist warping. The advantage with respect to treatments in the literature is that the solution of a single Neumann-like problem is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The term fiber indicates lines parallel to the longitudinal beam axis.

  2. A generalization of Cesàro-Volterra formula for square integrable strain fields has been recently contributed in [5, 6]. The result has no application for our present purpose.

  3. The definition of (Curl A)T given above was assumed in [16] to define Curl A, with a corresponding change in Stokes theorem. A discussion on Stokes theorem and on its implications in continuum mechanics can be found in [14].

  4. Independence of the normal force \(N=\int_{\varOmega}^{}\sigma (\mathbf{r},z)\,dA=\int_{\varOmega}^{}E (\mathbf{r})\varepsilon (\mathbf{r},z)\,dA\) from z gives \(0=N{'}= \varepsilon '_{\mathbf{G}}\int_{\varOmega}^{}E (\mathbf{r})\,dA\), so that \(\varepsilon '_{\mathbf{G}}=0\).

  5. Extension of Euler stretching formula to general connections has been contributed in [32] according to a geometric formulation of continuum mechanics [2530, 33].

References

  1. Barretta, R., Barretta, A.: Shear stresses in elastic beams: an intrinsic approach. Eur. J. Mech. A, Solids 29, 400–409 (2010)

    Article  ADS  Google Scholar 

  2. Barretta, R.: On the relative position of twist and shear centres in the orthotropic and fiberwise homogeneous Saint-Venant beam theory. Int. J. Solids Struct. 49, 3038–3046 (2012)

    Article  Google Scholar 

  3. Beltrami, E.: Osservazioni sulla nota precedente. Atti Acad. Lincei Rend. 1(5), 141–142 (1886). = Opere 4, 190–223

    Google Scholar 

  4. Cesàro, E.: Sulle formule del Volterra, fondamentali nella teoria delle distorsioni elastiche. Rend. Napoli 12(3a), 311–321 (1906)

    MATH  Google Scholar 

  5. Ciarlet, P.G., Gratie, L., Mardare, C.: A generalization of the classical Cesàro-Volterra path integral formula. C. R. Acad. Sci. Paris, Ser. I 347, 577–582 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciarlet, P.G., Gratie, L., Mardare, C.: A Cesàro-Volterra formula with litte regularity. J. Math. Pures Appl. 93, 41–60 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Cicala, P.: Il centro di taglio nei solidi cilindrici. Atti Accad. Sci Torino, Ser. Fis. 70, 356–371 (1935)

    MATH  Google Scholar 

  8. Clebsh, A.: Theorie der Elasticität fester Körper. Teubner, Leipzig (1862)

    Google Scholar 

  9. Dong, S.B., Kosmatka, J.B., Lin, H.C.: On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinder, part I: methodology for Saint-Venant solutions. J. Appl. Mech. 68, 376–381 (2001)

    Article  ADS  MATH  Google Scholar 

  10. Ecsedi, I.: A formulation of the centre of twist and shear for nonhomogeneous beam. Mech. Res. Commun. 27(4), 407–411 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. El Fatmi, R., Zenzri, H.: A numerical method for the exact elastic beam theory: applications to homogeneous and composite beams. Int. J. Solids Struct. 41, 2521–2537 (2004)

    Article  MATH  Google Scholar 

  12. Fichera, G.: Existence Theorems in Elasticity. Encyclopædia of Physics, vol. VIa/2. Springer, New York (1972)

    Google Scholar 

  13. Fichera, G.: Remarks on Saint-Venant’s principle. In: I.N. Vekua 70th Anniversary Volume, Moskow (1977)

    Google Scholar 

  14. Fosdick, R., Royer-Carfagni, G.: A Stokes theorem for second-order tensor fields and its implications in continuum mechanics. Int. J. Non-Linear Mech. 40, 381–386 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurtin, M.E.: A generalization of the Beltrami stress functions in continuum mechanics. Arch. Ration. Mech. Anal. 13, 321–329 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gurtin, M.E.: The Linear Theory of Elasticity. Encyclopædia of Physics, vol. VIa/2. Springer, New York (1972)

    Google Scholar 

  17. Kirchhoff, G.: Über die Gleichungen des Gleichgewicht und die Bewegung eines elastischen Körpers bei nicht unendlicht Vershiebungen seiner Theile. Sitzgsber. Akad. Wiss. Wien 9, 762–773 (1852)

    Google Scholar 

  18. Kosmatka, J.B., Lin, H.C., Dong, S.B.: On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinder, part II: cross sectional properties. J. Appl. Mech. 68, 382–391 (2001)

    Article  ADS  MATH  Google Scholar 

  19. Ladevéze, P., Simmonds, J.: New concepts for linear beam theory with arbitrary geometry and loading. Eur. J. Mech. A, Solids 17(3), 377–402 (1998)

    Article  MathSciNet  Google Scholar 

  20. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San Francisco (1963)

    MATH  Google Scholar 

  21. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity, third, revised and augmented edn., Moscow, Leningrad (1949). Translated from the russian by J.R.M. Radok, P. Noordhoff Ltd Groningen, Holland (1953)

  22. Novozhilov, V.V.: Theory of Elasticity. Pergamon, London (1961)

    MATH  Google Scholar 

  23. Romano, G.: Scienza delle Costruzioni, Tomo II. Hevelius, Benevento (2003)

    Google Scholar 

  24. Romano, G.: Continuum mechanics on manifolds. Lecture Notes, University of Naples Federico II (2007). http://wpage.unina.it/romano

  25. Romano, G., Barretta, R., Diaco, M.: On the general form of the law of dynamics. Int. J. Non-Linear Mech. 44(6), 689–695 (2009)

    Article  ADS  Google Scholar 

  26. Romano, G., Barretta, R., Barretta, A.: On Maupertuis principle in dynamics. Rep. Math. Phys. 63(3), 331–346 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Romano, G., Barretta, R., Diaco, M.: On continuum dynamics. J. Math. Phys. 50, 102903–1–26 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  28. Romano, G., Barretta, R., Diaco, M.: Algorithmic tangent stiffness in elastoplasticity and elastoviscoplasticity: a geometric insight. Mech. Res. Commun. 37(3), 289–292 (2010)

    Article  MathSciNet  Google Scholar 

  29. Romano, G., Diaco, M., Barretta, R.: Variational formulation of the first principle of continuum thermodynamics. Contin. Mech. Thermodyn. 22(3), 177–187 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Romano, G., Barretta, R.: Covariant hypo-elasticity. Eur. J. Mech. A, Solids 30(6), 1012–1023 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  31. Romano, G., Barretta, A., Barretta, R.: On torsion and shear of Saint-Venant beams. Eur. J. Mech. A, Solids 35, 47–60 (2012)

    Article  MathSciNet  Google Scholar 

  32. Romano, G., Barretta, R.: On Euler’s stretching formula in continuum mechanics. Acta Mech. 224, 211–230 (2013)

    Article  Google Scholar 

  33. Romano, G., Barretta, R.: Geometric constitutive theory and frame invariance. Int. J. Non-Linear Mech. 51, 75–86 (2013). doi:10.1016/j.ijnonlinmec.2012.12.006

    Article  ADS  Google Scholar 

  34. de Saint-Venant, A.J.C.B.: Mémoire sur la torsion des prismes. Mém. Acad. Sci. Inst. Fr. 14, 233–560 (1856)

    Google Scholar 

  35. de Saint-Venant, A.J.C.B.: Mémoire sur la flexion des prismes. J. Math. Pures Appl. Ser. 2 1, 89–189 (1856)

    Google Scholar 

  36. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  37. Solomon, L.: Élasticité Lineaire. Masson, Paris (1968)

    MATH  Google Scholar 

  38. Stephen, N.G., Maltbaek, J.C.: The relationship between the centres of flexure and twist. Int. J. Mech. Sci. 21(6), 373–377 (1979)

    Article  MATH  Google Scholar 

  39. Synge, J.L.: The problem of Saint Venant for a cylinder with free sides. Q. Appl. Math. II, 307–317 (1945)

    MathSciNet  Google Scholar 

  40. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  41. Toupin, R.A.: Saint-Venant’s principle. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  42. Trefftz, E.: Über den Schubmittelpunkt in einem durch eine Einzellast gebogenen Balken. Z. Angew. Math. Mech. 15, 220–225 (1935)

    Article  MATH  Google Scholar 

  43. Volterra, V.: Sur l’équilibre des corps élastiques multiplement connexes. Ann. Ecole Norm. 24, 401–517 (1907)

    MathSciNet  MATH  Google Scholar 

  44. Weinstein, A.: The center of shear and the center of twist. Q. Appl. Math. 5, 97–99 (1947)

    MATH  Google Scholar 

Download references

Acknowledgements

The support of consortium ReLUIS, Research line 2.2.2, Triennium 2010-2013, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Barretta.

Additional information

The author is grateful to Prof. Giovanni Romano for valuable teachings.

Appendix

Appendix

The issue of kinematic compatibility between strain and displacement fields was first investigated by Kirchhoff [17], Saint-Venant [34], Beltrami [3]. A coordinate-free formulation was provided by Gurtin [15]. For the readers convenience, the results referred to in the paper are recalled hereafter.

Lemma 1

Curl (∇u)T=(∇curl u)T, with \(\mathbf{u}:\textsc{Dom}\subseteq \mathcal{S}\mapsto V\).

Proof

It is enough to perform the computation:

The result follows. □

Proposition 11

(Necessary Condition of Integrability)

Let \(\mathbf{u}:\textsc{Dom}\subseteq \mathcal{S}\mapsto V\) be a 3-D vector field.

$$\mathbf{D}:=\mathrm{sym}\,\nabla \mathbf{u}\quad \implies\quad \mathrm{Curl}\,(\mathrm{Curl}\,\mathbf{D})^T=\mathbf{O}. $$

Proof

By Lemma 1 and because Curl ∇u=O, a direct computation gives:

$$\mathrm{Curl}\,\mathbf{D}=\mathrm{Curl}\,(\mathrm{sym}\,\nabla \mathbf{u}) =\mathrm{Curl}\,\biggl(\frac{1}{2}\nabla \mathbf{u}+\frac{1}{2}\nabla \mathbf{u}^T\biggr) =\frac{1}{2}\mathrm{Curl}\,(\nabla \mathbf{u})^T =\frac{1}{2}(\nabla \mathrm{curl}\,\mathbf{u})^T , $$

so that \(\mathrm{Curl}\,(\mathrm{Curl}\,\mathbf{D})^{T} =\mathrm{Curl}\,\nabla(\frac{1}{2}\mathrm{curl}\,\mathbf{u})=\mathbf{O}\). □

Lemma 2

Let A:DomL(V;V) be a tensor field fulfilling the differential equation Curl A(x)=OxDom, with \(\textsc{Dom}\subseteq \mathcal{S}\) a simply connected 3-D domain. Then, there exists a vector field u:DomV such thatu=A.

Proof

Curl A=O, so that o=(Curl A)T h=curl (A T h), ∀hV. Since the domain \(\textsc{Dom}\subseteq \mathcal{S}\) is simply connected, then there exists a scalar field \(f:\textsc{Dom}\mapsto \mathcal{R}\) such that ∇f=A T h. Setting f:=uh, with u:DomV a vector field, we get the formula: ∇f=(∇u)T h. Accordingly, the relation ∇u=A follows. □

Proposition 12

(Integrability Criterion)

Let \(\textsc{Dom}\subseteq \mathcal{S}\) be a simply connected 3-D domain. The differential condition:

$$\mathrm{Curl}\,(\mathrm{Curl}\,\mathbf{D})^T(\mathbf{x})=\mathbf{O}, \quad\forall \mathbf{x}\in \textsc{Dom}, $$

ensures the existence of a vector field u:DomV such that sym ∇u=D.

Proof

Resorting to Lemma 2, we infer that there exists a vector field ω:DomV such that: (Curl D)T=∇ω. Then, being I 1(Curl D)T=0, we have that I 1(∇ω)=div ω=0. Let us consider the skew-symmetric tensor field W:DomL(V;V) related to the axial vector field ω:DomV, i.e., W(x)h=ω(xh, for any xDom and hV. By resorting to the formula curl (ω×h)=(∇ω)h−(div ω)h and recalling that div ω=0, a direct computation gives:

Accordingly the formula holds: Curl D+Curl W=Curl (D+W)=O, so that by Lemma 2 we can write ∇u=D+W, where u:DomV is a vector field. The result follows. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barretta, R. On Cesàro-Volterra Method in Orthotropic Saint-Venant Beam. J Elast 112, 233–253 (2013). https://doi.org/10.1007/s10659-013-9432-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-013-9432-7

Keywords

Mathematics Subject Classification

Navigation