Skip to main content
Log in

Kinematics of Hypersurfaces in Riemannian Manifolds

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this work we study the kinematics of an m-dimensional continuum moving in an (m+1)-dimensional ambient space, modelled by the motion of a hypersurface M in a Riemannian manifold N. Focusing on the codimension of the continuum relative to the ambient space rather than on its dimension, we provide a unified framework for either curves moving on surfaces, surfaces moving in a 3-dimensional space (Euclidean or Riemannian), or hypersurfaces moving in a Riemannian space of arbitrary dimension. Further, the use of general geometric structures and a coordinate-free language facilitate the description of more general continua. We present formulae for the variation of geometric quantities of the hypersurface, some of which generalize those given for surfaces in Euclidean space (Kadianakis, N. in J. Elasticity 16:1–17, 2010). The main point in the present work is the use of kinematical quantities which result from a generalized version of the polar decomposition theorem for surfaces introduced by Man, C.-S. and Cohen, H. (in J. Elast. 16:97–104, 1986) and adapted here for hypersurfaces. We apply our results to motion along the normal and to pure strain motion. Finally, we discuss the relation of our results to Differential Geometry and Physics. Specifically, we provide an application for the case of a curve moving on a 2-dimensional manifold, which models a 1-dimensional continuum moving on a surface. The later application is presented independently of the embedding of the surface in a larger space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kadianakis, N.: Evolution of surfaces and the kinematics of membranes. J. Elast. 99, 1–17 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Man, C.-S., Cohen, H.: A coordinate-free approach to the kinematics of membranes. J. Elast. 16, 97–104 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Murdoch, A.I.: A coordinate-free approach to surface kinematics. Glasg. Math. J. 32, 299–307 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 197–226 (1958)

    Article  MATH  Google Scholar 

  6. Truesdell, C.: A First Course in Rational Continuum Mechanics, vol. 1. Academic Press, San Diego (1977)

    MATH  Google Scholar 

  7. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  8. Segev, R., Rodnay, G.: Cauchy’s theorem on manifolds. J. Elast. 56, 129–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fosdick, R., Tang, H.: Surface transport in continuum mechanics. Math. Mech. Solids 14, 587–598 (2009)

    Article  MATH  Google Scholar 

  10. Kadianakis, N.: On the geometry of Lagrangian and Eulerian descriptions in continuum mechanics. Z. Angew. Math. Mech. 79, 131–138 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Appleby, P.G., Kadianakis, N.: A frame-independent description of the principles of classical mechanics. Arch. Ration. Mech. Anal. 95, 1–22 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Capriz, G.: Continua with Microstructure. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  13. Epstein, M., Manuel de Leon, B.: Geometrical theory of uniform Cosserat media. J. Geom. Phys. 26, 127–170 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Yavari, A., Marsden, J.E.: Covariant balance laws in continua with microstructure. Rep. Math. Phys. 63(1), 1–42 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Andrews, B.: Contraction of convex hypersurfaces in Riemannian spaces. J. Differ. Geom. 39, 407–431 (1994)

    MATH  Google Scholar 

  16. Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces. In Hildebrandt, S., Struve, M. (Eds.), Calculus of Variations and Geometric Evolution Problems, pp. 45–84. Springer, Berlin (1999)

    Google Scholar 

  17. Capovilla, R., Guven, J., Santiago, J.A.: Deformations of the geometry of lipid vesicles. J. Phys. A, Math. Gen. 36, 6281–6295 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Capovilla, R., Guven, J.: Geometry of deformations of relativistic membranes. Phys. Rev. D 51(12), 6736–6743 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  19. Goldstein, R.A., Ryan, P.J.: Infinitesimal rigidity of Euclidean submanifolds. J. Differ. Geom. 10, 49–60 (1975)

    MathSciNet  MATH  Google Scholar 

  20. Yano, K.: Integral Formulas in Riemannian Geometry. Dekker, New York (1970)

    MATH  Google Scholar 

  21. do Carmo, M.: Riemannian Geometry. Birkhauser, Boston (1992)

    Book  MATH  Google Scholar 

  22. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 4. Publish or Perish, Boston (1979)

    Google Scholar 

  23. Szwabowicz, M.L.: Pure strain deformations of surfaces. J. Elast. 92, 255–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. van der Heijden, G.H.M.: The static deformation of a twisted elastic rod constrained to lie on a cylinder. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 457, 695–715 (2001)

    Article  ADS  MATH  Google Scholar 

  25. Langer, R., Singer, D.: The total squared curvature of closed curves. J. Differ. Geom. 20(1), 1–22 (1984)

    MathSciNet  MATH  Google Scholar 

  26. Hangan, T., Murea, C.M., Sari, T.: Poleni curves on surfaces of constant curvature. Rend. Semin. Mat. (Torino) 67(1), 91–107 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Arroyo, J., Garay, O.J., Mencia, J.J.: Closed generalized elastic curves in S 2(1). J. Geom. Phys. 48, 339–353 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Maekawa, T.: An overview of offset curves and surfaces. Comput. Aided Geom. Des. 31, 165–173 (1999)

    Article  MATH  Google Scholar 

  29. Simo, J.C., Marsden, J.E.: On the rotated stress tensor and the material version of the Doyle-Ericksen formula. Arch. Ration. Mech. Anal. 86, 213–231 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. John, F.: Partial Differential Equations, 3rd edn. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  31. Barbosa, J.L., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in riemannian manifolds. Math. Z. 197, 123–138 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Barbosa, J.L., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185, 339–353 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Daniel Meyer of the Institut de Mathematiques de Jussieu, Universite Paris 7, for his helpful discussions and critical comments during the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kadianakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadianakis, N., Travlopanos, F. Kinematics of Hypersurfaces in Riemannian Manifolds. J Elast 111, 223–243 (2013). https://doi.org/10.1007/s10659-012-9399-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9399-9

Keywords

Mathematics Subject Classification (2010)

Navigation