Skip to main content
Log in

Comparison of a Rapidely Converging Phase Field Model for Interfaces in Solids with the Allen-Cahn Model

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We compare two phase field models for interfaces in elastic solids carrying low surface energy. One model has hybrid properties of a Hamilton-Jacobi and a parabolic equation, the other is the Allen-Cahn model. For vanishing width of the interface we construct asymptotic solutions of second order for the hybrid model and of first order for the Allen-Cahn model. These constructions show that the width of the diffused interface necessary for tracking accurately the sharp interface can be chosen much larger for the hybrid model than for the Allen-Cahn model, and that moreover the hybrid model can describe interfaces with nonlinear kinetic relation. This explains why numerical simulations based on the hybrid model are considerably more effective. These simulations are discussed in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alber, H.-D.: Evolving microstructure and homogenization. Continum. Mech. Thermodyn. 12, 235–286 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Alber, H.-D., Zhu, P.: Solutions to a model with nonuniformly parabolic terms for phase evolution driven by configurational forces. SIAM J. Appl. Math. 66(2), 680–699 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alber, H.-D., Zhu, P.: Evolution of phase boundaries by configurational forces. Arch. Rational Mech. Anal. 185, 235–286 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Alber, H.-D., Zhu, P.: Interface motion by interface diffusion driven by bulk energy: justification of a diffusuve interface model. Continuum Mech. Thermodyn. 23(2), 139–176 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  5. Almgren, R.F.: Second-order phase field asymptotics for unequal conductivities. SIAM J. Appl. Math. 59(6), 2086–2107 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alikakos, N.D., Bates, P.W., Chen, X.: Convergence of the Cahn-Hilliard equation to the Hele-Shaw model. Arch. Rational Mech. Anal. 128, 165–205 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bonetti, E., Colli, P., Dreyer, W., Schimpanera, G., Sprekels, J.: On a model for phase separation in binary alloys driven by mechanical effects. Phys. D. 165, 48–65 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brassel, M., Bretin, E.: A modified phase field approximation for mean curvature flow with conservation of the volume. Math. Meth. Appl. Sci. 34, 1157–1180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caginalp, G.: Surface tension and supercooling in solidification theory. In: Garrido ed, L. (ed.) Application of field theories to statistical mechanics. Lecture Notes in Physics, vol. 216, pp. 216–226 (1985)

    Chapter  Google Scholar 

  10. Caginalp, G.: The role of microscopic anisotry in the macroscopic behavior of a phase boundary. Annals. of Physics 172, 136–155 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Caginalp, G.: An analysis of a phase field model of a free boundary. Arch. Rat. Mech. Anal. 92, 205–226 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caginalp, G., Chen, X.: Convergence of the phase field model to its sharp interface limits. Euro J. Appl. Math. 9, 417–445 (1998). 795–801

    Article  MathSciNet  MATH  Google Scholar 

  13. Caginalp, G., Fife, P.: Dynamics of layered interfaces arising from phase boundaries. SIAM J. Appl. Math. 48, 506–518 (1988)

    Article  MathSciNet  Google Scholar 

  14. Carrive, M., Miranville, A., Piétrus, A.: The Cahn-Hilliard equation for deformable elastic continua. Adv. Math. Sci. Appl. 10(2), 539–569 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Chen, X.: Spectrums for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interface. Comm. Partial Diff. Eqns. 19, 1371–1395 (1994)

    Article  MATH  Google Scholar 

  16. Chen, X.: Global asymptotic limit of solutions of the Cahn-Hilliard equation. J. Diff. Geom. 44, 262–311 (1996)

    MATH  Google Scholar 

  17. Chen, X., Reitich, F.: Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling. J. Math. Anal. Appl. 164(2), 350–362 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, X., Caginalp, G., Eck, C.: A rapidely converging phase field model. Discrete Contin. Dyn. Syst. 15(4), 1017–1034 (2006)

    Article  MATH  Google Scholar 

  19. Collins, J.B., Levine, H.: Diffuse interface model of diffusion-limited crystal growth. Physical Reviews B 31(9), 6119–6122 (1985)

    Article  ADS  Google Scholar 

  20. Escher, J., Simonett, G.: On Hele-Shaw models with surface tension. Math. Res. Lett. 3(4), 467–474 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Escher, J., Simonett, G.: Classical solutions for Hele-Shaw models with surface tension. Adv. Differ. Equ. 2(4), 619–642 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Evans, L.C., Mete Soner, H., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45, 1097–1123 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fife, P., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Rat. Mech. Anal. 65, 335–361 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fife, P., Penrose, O.: Interfacial dynamics for thermodynamically consistent phase field models with nonconserved order parameter. Electron. J. Diff. Eq. 1, 1–49 (1995)

    MathSciNet  Google Scholar 

  25. Fix, G.: Phase field models for free boundary problems. In: Free Boundary Problems, Theory and Applications, Vol. II, Proc. Interdisc. Symp., Montecatini, Italy 1981. Res. Notes Math., vol. 79, pp. 580–589 (1983)

    Google Scholar 

  26. Fratzl, P., Penrose, O., Lebowitz, J.: Modeling of phase separation in alloys with coherent elastic misfit. J. Statist. Phys. 95, 1429–1503 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Fried, E., Gurtin, M.: Dynamic solid-solid transitions with phase characterized by an order parameter. Phys. D. 72, 287–308 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Garcke, H.: On Cahn-Hilliard systems with elasticity. Proc. R. Soc. Edinburgh A 133, 307–331 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Garcke, H., Stinner, B.: Second order phase field asymptotics for multi-component systems. Interfaces Free Bound. 8(2), 131–157 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gärtner, J.: Bistable reaction-diffusion equations and excitable media. Math. Nachr. 114, 128–182 (1983)

    Google Scholar 

  31. Hou, T., Rosakis, P., LeFloch, P.: A level-set approach to the computation of twinning and phase-transition dynamics. J. Comput. Phys. 150(2), 302–331 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Kanel’, Ya.I.: On the stabilization of solutions of the Cauchy problem for equations arising in the theory of combustion. Mat. Sbornik 59, 245–288 (1962). See also, Dokl. Akad. Nauk SSSR 132, 268–271 (1960) (=Soviet Math. Dokl.) 1, 533–536 (1960)

    MathSciNet  Google Scholar 

  33. Karma, A., Rappel, W.-J.: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323–4349 (1998)

    Article  ADS  MATH  Google Scholar 

  34. Leo, P., Lowengrub, J., Jou, H.: A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater. 46(6), 2113–2130 (1998)

    Article  Google Scholar 

  35. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Luckhaus, S.: Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature. Eur. J. Appl. Math. 1(2), 101–111 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. de Mottoni, P., Schatzman, M.: Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347, 1533–1589 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Pego, R.: Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 422, 261–278 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Rubinstein, J., Sternberg, P., Keller, J.: Fast reaction, slow diffusion and curve shortening. SIAM J. Appl. Math. 49, 116–133 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mete Soner, H.: Convergence of the phase-field equations to the Mullins-Sekerka problem with kinetic undercooling. Arch. Ration. Mech. Anal. 131(2), 139–197 (1995)

    Article  MATH  Google Scholar 

  41. Stoth, B.: Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry. J. Diff. Equations 125, 154–183 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Helpful remarks of the referees are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Dieter Alber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alber, HD., Zhu, P. Comparison of a Rapidely Converging Phase Field Model for Interfaces in Solids with the Allen-Cahn Model. J Elast 111, 153–221 (2013). https://doi.org/10.1007/s10659-012-9398-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9398-x

Keywords

Mathematics Subject Classification

Navigation