Skip to main content
Log in

Derivation of the Linear Elastic String Model from Three-Dimensional Elasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We derive a one-dimensional model for the displacement and torsion of an elastic string starting from a cylindrical three-dimensional linearized prestressed elastic body with small diameter. The prestress is due to the prior elastic deformation of an isotropic, homogenous, elastic body. We deduce the scaling of forces by a formal asymptotic expansion. Then we prove that the family of solutions of three-dimensional problems converges to a limit that is the unique solution of the string model. Coefficients of the string model depend on the three-dimensional elasticity coefficients and the tension due to the predeformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acerbi, E., Buttazzo, G., Percivale, D.: A variational definition of the strain energy for an elastic string. J. Elast. 25, 137–148 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ciarlet, P.G.: Mathematical Elasticity, Vol I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

    Google Scholar 

  3. Ciarlet, P.G.: Mathematical Elasticity, Vol II: Theory of Plates. North-Holland, Amsterdam (1997)

    MATH  Google Scholar 

  4. Ciarlet, P.G.: Mathematical Elasticity, Vol III: Theory of Shells. North-Holland, Amsterdam (2000)

    MATH  Google Scholar 

  5. Della Longa, L., Londero, A.: Thin walled beams with residual stress. J. Elast. 96, 27–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506 (2002)

    Article  MATH  Google Scholar 

  7. Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by Γ-convergence. Arch. Ration. Mech. Anal. 180, 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoger, A.: On the determination of residual stress in an elastic body. J. Elast. 16, 303–324 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Irago, H., Viaño, J.M.: Error estimation in the Bernoulli–Navier model for elastic rods. Asymptot. Anal. 21, 71–87 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Johnson, B.E., Hoger, A.: The dependence of the elasticity tensor on residual stress. J. Elast. 33, 145–165 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jurak, M., Tambača, J.: Derivation and justification of a curved rod model. Math. Models Methods Appl. Sci. 9, 991–1014 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Le Dret, H., Raoult, A.: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74, 549–578 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Lewicka, M., Pakzad, M.R.: Scaling laws for non-Euclidean plates and the W 2,2 isometric immersions of Riemannian metrics. ESAIM: Control Optim. Calc. Var. 17, 1158–1173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lewicka, M., Mahadevan, L., Pakzad, M.R.: The Foppl-von Karman equations for plates with incompatible strains. Proc. R. Soc. A 467, 402–426 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Marigo, J.J., Meunier, N.: Hierarchy of one-dimensional models in nonlinear elasticity. J. Elast. 83, 1–28 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miara, B.: Justification of the asymptotic analysis of elastic plates, I: the linear case. Asymptot. Anal. 9, 47–60 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Mora, M.G., Müller, S.: Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ-convergence. Calc. Var. Partial Differ. Equ. 18, 287–305 (2003)

    Article  MATH  Google Scholar 

  18. Mora, M.G., Müller, S.: A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21, 271–293 (2004)

    ADS  MATH  Google Scholar 

  19. Mora, M.G., Müller, S., Schultz, M.G.: Convergence of equilibria of planar thin elastic beams. Indiana Univ. Math. J. 56, 2413–2438 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies: an Introduction. Elsevier, Amsterdam (1980)

    Google Scholar 

  21. Paroni, R.: Theory of linearly elastic residually stressed plates. Math. Mech. Solids 11, 137–159 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Paroni, R.: The equations of motion of a plate with residual stress. Meccanica 41, 1–21 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Truesdell, C.: A First Course in Rational Continuum Mechanics. Springer, New York (1967)

    Google Scholar 

  24. Trabucho, L., Viaño, J.M.: Mathematical Modelling of Rods. Handbook of Numerical Analysis, vol. 4, pp. 487–974 (1996)

    Google Scholar 

  25. Tutek, Z., Aganović, I.: A justification of the one-dimensional linear model of elastic beam. Math. Methods Appl. Sci. 8, 1–14 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josip Tambača.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marohnić, M., Tambača, J. Derivation of the Linear Elastic String Model from Three-Dimensional Elasticity. J Elast 111, 41–65 (2013). https://doi.org/10.1007/s10659-012-9394-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9394-1

Keywords

Mathematics Subject Classification (2010)

Navigation