Skip to main content
Log in

Evaluation of biocontrol potential of Achromobacter xylosoxidans against Fusarium wilt of melon

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

To investigate the potential of biological control measures against soil-borne plant pathogens, this study evaluated the in vitro and in vivo antifungal activity of endophytic bacteria, Achromobacter xyloxidans, against isolates of Fusarium oxysporum and Fusarium solani responsible of Fusarium wilt of melon (Cucumis melo) in Tunisia. Twenty-one Fusarium isolates were recovered and identified from diseased tissues of different melongrowing regions. The bacterial isolate was recovered and identified from contaminated Petri plates of the Fusarium phytopathogenic isolate. In vitro assay, the results showed positive effects of A. xylosoxidans by reducing significantly 80% of pathogen mycelial growth compared to the control. Furthermore, under greenhouse conditions, A. xylosoxidans significantly reduced 60% of disease severity on melon plants inoculated with Fusarium isolates. According to our results, A. xylosoxidans could be used as a promising and potentially Fusarium disease bio-control agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bafti, S. S., Bonjar, G. H. S., Aghighi, S., Biglari, S., Farrokhi, P. R., & Aghelizadeh, A. (2005). Biological control of Fusarium oxysporum f.sp. melonis, the causal agent of root rot disease of greenhouse cucurbits in Kerman Province of Iran. American Journal of Biochemistry and Biotechnology, 1(1), 22–26.

    Article  Google Scholar 

  • Bezert, G., Chappe, P., Mourey, A., & Loubinoux, B. (1996). Action de bacillus et d’actinomycètes sur les champignons du bleuissement du bois. Bulletin des Académies et Sociétés Lorraines des. Sciences, 35, 3.

    Google Scholar 

  • Booth, C. (1977). Fusarium : Laboratory guide to the identification of the major species. Surrey: Commonwealth mycological Institute, Kew.

    Google Scholar 

  • Bora, T., Ozaktan, E., Gore, A., & Slan, E. (2004). Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of two strains of Pseudomonas putida. Journal of Phytopathology, 152, 471–475. https://doi.org/10.1111/j.1439-0434.2004.00877.

    Article  Google Scholar 

  • Burgess, L.W., & Liddell, C.M. 1983. Laboratory manual for Fusarium research. Fusarium Research Laboratory, Department of Plant Pathology and Agricultural Entomology. The University of Sydney, Australia.

  • Carmichael, J. W., Kendrick, W. B., Conners, L. I., & Singler, L. (1980). Genera of Hyphomycetes. Edmonton: The University of Alberta Press.

    Google Scholar 

  • Champaco, E. R., Martyn, R. D., & Miller, M. E. (1993). Comparison of Fusarium solani and F. oxysporum as causal agents of fruit rot and root rot of muskmelon. Horticultural Science, 28, 1174–1177.

    Google Scholar 

  • Chikh-Rouhou, H., Gonzalez-Torres, R., Oumouloud, A., & Alvarez, J. M. (2010). Screening and morphological characterization of melons for resistance to Fusarium oxysporum f.sp melonis race 1.2. Journal of Horticulture Sciences, 45, 1021–1025.

  • Compant, S., Reiter, A., Sessitsch, J., Nowak, C., Clement, A., & Itbarka, E. (2005). Endophytic colonization of Vitis vinifera by a plant growth promoting bacterium, burkholderia sp.strain PsJN. Journal of Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.71.4.1685-1693.

  • De Boer, M., Van der Sluis, L., Van Loon, L. C., & Bakker, A. H. M. P. (1999). Combining fluorescent Pseudomonas spp. strains to enhance suppression of Fusarium wilt of radish. European Journal of Plant Pathology, 105(2), 201–210.

    Article  Google Scholar 

  • Domsch, K. H., Gams, W., & Anderson, T. (2007). Compendium of soil Fungi (2nd ed.). Eching: IHW-Verlag.

    Google Scholar 

  • El-Hassan, S. A., & Gowen, S. R. (2006). Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. Journal of Phytopathology. https://doi.org/10.1111/j.1439-0434.2006.01075.

  • Espinosa, I., Baéz, M., Irian Percedo, M., & Siomara, M. (2013). Evaluation of simplified DNA extraction methods for Streptococcus suis typing. Journal of Revista de Salud Animal, 35(1), 59–63.

    Google Scholar 

  • Figueiredo, M. V. B., Seldin, L., de Araujo, F. F., & Mariano, R. L. R. (2010). Plant growth promoting Rhizobacteria: Fundamentals and applications. In D. Maheshwari (Ed.), Plant growth and health promoting bacteria. Microbiology monographs (pp. 21–43). Berlin: Springer.

    Chapter  Google Scholar 

  • Food and Agriculture Organization statistic (2014). http://www.fao.org. Accessed June 2015.

  • Hanlin, R. T. (1990). Illustrated genera of ascomycetes. Vols. I. St. Paul: APS Press.

    Google Scholar 

  • Hanlin, R. T. (1998). Combined keys to illustrated genera of ascomycetes. Vols. I and II. St. Paul: APS Press.

    Google Scholar 

  • Joseph, B., Patra, R. R., & Lawrence, R. (2007). Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal of Plant Production. https://doi.org/10.22069/IJPP.2012.532.

  • Kistler, H. C., & Rep, M. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464, 367–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalczyk, A., Chyc, M., Ryszka, P., & Latowski, D. (2016). Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation. Journal of Environmental Science and Pollution Research, 23(11), 11349–11356.

    Article  CAS  PubMed  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Ames: Blackwell Publishing.

    Book  Google Scholar 

  • Manikanda, R., Saravanakumar, D., Rajendran, L., Raguchander, T., & Samiyappan, R. (2010). Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Journal of Biology Control, 54, 83–89. https://doi.org/10.1016/j.biocontrol.2010.04.004.

    Article  Google Scholar 

  • Meena, R., Radhajeyalakshmi, R., Marimuthu, T., Vidhyasekaran, P., Sabitha, D., & Velazhahan, R. (2000). Induction of pathogenesis-related proteins, phenolics and phenylalanine ammonia-lyase in groundnut by Pseudomonas fluorescens. Journal of Plant Diseases and Protection, 107(5), 467–472.

    Google Scholar 

  • Nawangsih, A. A., & Purba, F. (2013). Isolation of fluorescent Pseudomonads, heat tolerant and chitinolytic bacteria in banana rhizosphere with antagonistic activities against Fusarium oxysporum f. sp. cubense in vitro and molecular identification of selected isolates. Journal of International Society for Southeast Asian Agricultural Sciences, 19(2), 30–40.

    Google Scholar 

  • Nelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: An illustrated manual for identification. Pennsylvania: Pennsylvania State University Press.

  • Ngoma, L., Esau, B., & Babalola, O. O. (2013). Isolation and characterization of beneficial indigenous endophytic bacteria for plant growth promoting activity in Molelwane farm, Mafikeng, South Africa. African Journal of Biotechnology, 26(12), 4105–4114.

    Google Scholar 

  • Parke, J. L., Rand, R. E., Joy, A. E., & King, E. B. (1991). Biological control of Pythium damping-off and Aphanomyces root rot of peas by application of Pseudomonas cepacia or P. fluorescens to seed. Plant Disease, 75, 987–992.

    Article  Google Scholar 

  • Registeri, R., Taghayi, S. M., & Banihashemi, Z. (2012). Effect of root colonizing bacteria on plant growth and Fusarium wilt in Cucumis melo. Journal of Agricultural Sciences and Technology, 14(5), 1121–1131.

    Google Scholar 

  • Satlewal, A., Ravindra, S., Zaidi, M., Shouche, Y., & Goel, R. (2008). Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium. Journal of Microbiology and Biotechnology, 18(3), 477–482.

    CAS  PubMed  Google Scholar 

  • Song, W. T., Zhou, L. G., Yang, C. Z., Cao, X. D., Zhang, L. Q., & Liu, X. L. (2004). Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Journal of Crop Protection, 23, 243–247. https://doi.org/10.1016/j.cropro.2003.08.007.

    Article  CAS  Google Scholar 

  • Suárez-Estrella, F., Vargas-García, M. C., López, M. J., Capel, C., & Moreno, J. (2007). Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Journal of Crop Protection. https://doi.org/10.1016/j.cropro.2006.04.003.

  • Trapero-Casas, A., Kaiser, W. J., & Ingram, D. M. (1990). Control of Pythium seed rot and preemergence damping-off of chickpea in the US, pacific north west and Spain. Plant Disease, 74, 563–568.

    Article  Google Scholar 

  • Tziros, G., Lagopodi, A. L., & Tzavella-klonari, K. (2007). Reduction of Fusarium wilt watermelon by Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Journal of Phytopathologia Mediterranea. https://doi.org/10.14601/Phytopathol_Mediterr-2245.

  • Vidhyasekaran, P., Velazhahan, R., & Balasubramanian, P. (2000). Biological control of crop diseases exploiting genes involved in systemic induced resistance. In R. K. Upadhyay et al. (Eds.), Biocontrol potential and its exploitation in sustainable agriculture (pp. 1–8). New York: Springer.

    Google Scholar 

  • Vidhyasekaran, P., Kamala, N., Ramanathan, A., Rajappan, K., Paranidharan, V., & Velazhahan, R. (2001). Induction of systemic resistance by Pseudomonas flurescens f1 against Xanthomonas oryzae v. oryzae in rice leave. Journal of Phytoparasitica, 29, 155–166.

    Article  Google Scholar 

  • Weller, D. M., & Cook, R. J. (1983). Suppression of take-all of wheat by seed treatment with fluorescent pseudomonads. Journal of Disease Control and Pest Management, 73(3), 463–469.

    Google Scholar 

  • Yamamoto, S., & Harayama, S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their amplification to the detection and taxonomic analysis of Pseudomonas putida strains. Journal of Applied Environmental Microbiology, 61(3), 1104–1109.

    CAS  PubMed  Google Scholar 

  • Yigit, F., & Dikilitas, M. (2007). Control of Fusarium wilt of tomato by combination of Fluorescent Pseudomonas, non-pathogen Fusarium and Trichoderma harzianum T-22 in greenhouse conditions. Journal of Plant Pathology, 6(2), 159–163.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Christie Nielsen Chaar for assistance with the English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dhaouadi.

Ethics declarations

Disclosure of potential conflicts of interests

Funding: This study and financial support for attending symposia were funded by the laboratory of plant protection at the National Agronomic Institute of Tunisia.

Conflict of interest: The authors declare that they have no conflict of interest.

Research involving human participants and/ or animals

a) Statement of human rights

Ethical approval: All procedures performed in this study involving human participants were in accordance with the ethical standards of the National Agronomic Institute of Tunisia.

b) Statement on the welfare of animals

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaouadi, S., Rouissi, W., Mougou-Hamdane, A. et al. Evaluation of biocontrol potential of Achromobacter xylosoxidans against Fusarium wilt of melon. Eur J Plant Pathol 154, 179–188 (2019). https://doi.org/10.1007/s10658-018-01646-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-01646-2

Keywords

Navigation