Skip to main content
Log in

Environmental effects on growth and sporulation of Fusarium spp. causing internal fruit rot in bell pepper

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Internal fruit rot in bell pepper (Capsicum annuum L.) is mainly caused by members of the Fusarium lactis species complex (FLASC) and to a lesser extent by Fusarium oxysporum and Fusarium proliferatum. Despite the importance of the disease, there is hardly no information about growth, sporulation and germination dynamics of FLASC. In order to understand the dominance of FLASC as main pathogen of internal fruit rot, the effects of temperature (5 °C – 35 °C), water activity (aw 0.76–0.96), pH (pH 3 - pH 9) and oxygen concentration (2.5% - 20%) on growth and sporulation of all three Fusarium species were compared. In addition, germination kinetics were also investigated. FLASC showed optimal mycelium growth and sporulation in the narrow range of 25 °C, while both other strains were also tolerant for higher temperatures to 30 °C. FLASC was also characterized by a broad pH optimum from pH 3–7 while F. oxysporum (pH 4–7) and F. proliferatum (pH 5–8) were more demanding concerning pH. In addition, optimal sporulation occurred in the acid region for FLASC (pH 3) whilst neutral and alkaline pH were more favourable for the other species. Germination kinetics revealed that FLASC did not benefit from an earlier and/or faster germination process. A thorough understanding of the growth characteristics and dominance of FLASC as main pathogen for internal fruit rot is inevitable to develop sustainable control measures for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfieri, S.A. Jr., Langdon, K.R, Wehlberg, C., Kimbrough, J.W. (1984). Index of plant diseases in Florida (revised). Florida Department of Agriculture and Consumer Sciences, Division Of Plant Industry. Bulletin 11:1–389.

  • Armengol, J., Moretti, A., Perrone, G., Vicent, A., Bengoechea, J. A., & Garcia-Jimenez, J. (2005). Identification, incidence and characterization of Fusarium proliferatum on ornamental palms in Spain. European Journal of Plant Pathology, 112, 123–131.

    Article  Google Scholar 

  • Bosland, P. W., Williams, P. H., & Morrison, R. H. (1988). Influence of soil temperature on the expressions of yellows and wilt of crucifers by Fusarium oxysporum. Plant Diseases, 72, 777–780.

    Article  Google Scholar 

  • Brennan, J. M., Fagan, B., van Maanen, A., Cooke, B. M., & Doohan, F. M. (2003). Studies on in vitro growth and pathogenicity of European Fusarium fungi. European Journal of Plant Pathology, 109, 577–587.

    Article  Google Scholar 

  • Cha, S. D., Jeon, Y. J., Ahn, G. R., Han, J. I., Han, K. H., & Kim, S. H. (2007). Characterization of Fusarium oxysporum isolated from paprika in Korea. Mycobiology, 35, 91–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi, H. W., Hong, S. K., Kim, W. G., & Lee, Y. K. (2010). First report of internal fruit rot of sweet pepper in Korea caused by Fusarium lactis. Plant Disease, 95, 1476.

    Article  Google Scholar 

  • Dallyn, H., & Fox, A. (1980). Spoilage of material of reduced water activity by xerophilic fungi. In G. H. Gould & E. L. Corry (Eds.), Microbial growth and survival in extreme environments (pp. 129–139). London and New York: Academic Press.

    Google Scholar 

  • Dantigny, P., Tchobanov, I., Bensoussan, M., & Zwietering, M. H. (2005). Modelling the effect of ethanol vapour on the germination time of Penicillium chrysogenum. Journal of Food Protection, 68, 1203–1207.

    Article  PubMed  Google Scholar 

  • Desjardins, A. E., Plattner, R. D., & Nelson, P. E. (1997). Production of fumonisin B1 and moniliformin by Gibberella fujikuroi from rice from various geographic areas. Applied and Environmental Microbiology, 63, 1838–1842.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doohan, F. M., Brennan, J., & Cooke, B. M. (2003). Influence of climatic factors on Fusarium species pathogenic to cereals. European Journal of Plant Pathology, 109, 755–768.

    Article  Google Scholar 

  • Elmer, W. H. (1990). Fusarium proliferatum, as causal agent in Fusarium crown and root rot of asparagus. Plant Disease, 74, 938.

    Article  Google Scholar 

  • Frans, M., Aerts, R., Van Herck, L., Van Calenberge, B., & Ceusters, J. (2016). Influence of floral morphology and fruit development on internal fruit rot in bell pepper (Capsicum annuum). Acta Horticulturae, 1144, 199–206.

    Article  Google Scholar 

  • Gomori, G. (1955). Preparation of buffers for use in enzyme studies. In S. P. Colowick & N. O. Caplan (Eds.), Methods of enzymology (pp. 138–146). New York: Academic Press.

    Google Scholar 

  • Griffin, D. M. (1981). Water and microbial stress. In M. Alexander (Ed.), Advances in Microbial Ecology (Vol. 5) (pp. 91–136). London: Plenum Publishing Corp.

    Chapter  Google Scholar 

  • Hibar, K., Daami-Remadi, M., Jabnoun-Khiareddine, H., & El Mahjoub, M. (2006). Temperature effect on mycelial growth and on disease incidence of Fusarium oxysporum f.Sp. radicis-lycopersici. Plant Pathology Journal, 5, 233–238.

    Article  Google Scholar 

  • Hubert, L., Verberkt, H., Hanemaaijer, J., Zwinkels, J., & Reeuwijk, J. (2003). Aantasting markpositie door inwendig vruchtrot paprika. Wageningen, Netherlands: DLV Facet report.

  • Jovicich, E., VanSickle, J. J., Cantliffe, D. J., & Stoffella, P. J. (2005). Greenhouse-grown colored peppers: A profitable alternative for vegetable production in Florida? HortTechnology, 15, 355–369.

    Google Scholar 

  • Kharbanda, P. D., Yang, J., Howard, R. J., & Mirza, M. (2006). Internal fruit rot of greenhouse peppers caused by Fusarium lactis-a new disease. The Greenhouse Business, 5, 11–16.

    Google Scholar 

  • Kline, L.W. and Wyenandt, C.A. (2014). Internal fruit rot and premature seed germination of field grown colored peppers. Proceedings The 22nd international pepper conference. Vina del Mar, p. 118, Chili 17-20 November.

  • Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory Manuel. Ames: Blackwell Professional.

    Book  Google Scholar 

  • Lin, W. C., & Saltveit, M. (2012). Greenhouse production. In V. M. Russo (Ed.), Peppers: Botany, production and uses (pp. 57–71). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Lomas-Cano, T., Palermo-Llamas, D., De Cara, M., Garcia-Rodriguez, C., Boix-Ruiz, A., Camacho-Ferre, F., & Tello-Marquina, T. C. (2014). First report of Fusarium oxysporum on sweet pepper seedlings in Almeria, Spain. Plant Disease, 98, 1435.

    Article  Google Scholar 

  • Marin, S., Sanchis, V., & Magan, N. (1995). Water activity, temperature and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize. Canadian Journal of Microbiology, 41, 1063–1070.

    Article  CAS  PubMed  Google Scholar 

  • Marin, S., Magan, N., Serra, J., Ramos, A. J., Canela, R., & Sanchis, V. (1999). Fumonisin B1 production and growth of Fusarium moniliforme and Fusarium proliferatum on maize, wheat and barley grain. Journal of Food Science, 64, 921–924.

    Article  CAS  Google Scholar 

  • Michailides, T. J., Morgan, D. P., & Subbarao, K. V. (1996). Fig endosepsis: An old disease still a dilemma for California growers. Plant Disease, 80, 828–841.

    Article  Google Scholar 

  • Nelson, P. E., Burgess, L. W., & Summerell, B. A. (1990). Some morphological and physiological characters of Fusarium species in sections Liseola and Elegans and similar new species. Mycologia, 82, 99–106.

    Article  Google Scholar 

  • Nirenberg, H. I., & O’Donnell, K. (1998). New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia, 903, 434–458.

    Article  Google Scholar 

  • Palermo-Llamas, D., Paton, L. G., Diaz, M. G., Serna, J. G., & Saez, S. B. (2012). The effects of storage duration, temperature and cultivar on the severity of garlic clove rot caused by Fusarium proliferatum. Postharvest Biology and Technology, 78, 34–39.

    Article  Google Scholar 

  • Paul, G. C., Kent, C., & Thomas, C. R. (1992). Viability testing and characterization of germination of fungal spores by automatic image analysis. Biotechnology and Bioengineering, 42, 11–23.

    Article  Google Scholar 

  • Pirotta, R., & Riboni, G. (1879). Studii sul latte. Arch. Lab. Bot. Crittogam. Pavia, 2, 316–317.

    Google Scholar 

  • Polderdijk, J. J., Boerrigter, H. A. M., Wilkinson, E. C., Meijer, J. G., & Janssens, M. F. M. (1993). The effects of controlled atmosphere storage at varying levels of relative humidity on weight loss softening and decay of red bell peppers. Scientia Horticulturae, 55, 315–321.

    Article  CAS  Google Scholar 

  • Rossi, V., Scandolara, A., & Battilani, P. (2009). Effect of environmental conditions on spore production by Fusarium verticillioides, the causal agent of maize ear rot. European Journal of Plant Pathology, 123, 159–169.

    Article  Google Scholar 

  • Samapundo, S., Devliehgere, F., De Meulenaer, B., & Debevere, J. (2005). The effect of water activity and temperature on growth and the relationship between Fumonisin production and the radial growth of Fusarium verticillioides and Fusarium proliferatum on corn. Journal of Food Protection, 68, 1054–1059.

    Article  CAS  PubMed  Google Scholar 

  • Sautour, M., Rouget, A., Dantigny, P., Divies, C., & Bensoussan, M. (2001). Prediction of conidial germination of Penicillium chrysogenum as influenced by temperature, water activity and pH. Letters in Applied Microbiology, 32, 131–134.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, J. C., Gordon, T. R., Shaw, D. V., & Koike, S. T. (2010). Effect of temperature on severity of Fusarium oxysporum f.Sp. lactucae. Plant Disease, 94, 13–17.

    Article  Google Scholar 

  • Soto-Plancarte, A., Betancourt-Resendes, I., Fernandez-Pavia, S.P., Lima, C.S., Pfenning, L.H., Rodriguez-Alvarado, G. (2013). Fusarium lactis and F. mexicanum associated with galls of Swietenia in Mexico. Proceedings APS-MSA Joint Meeting 2013, p. 369, Austin, 10-14 August.

  • Tonapi, V. A., Mundada, R. R., Navi, S. S., Reddy, R. K., Thakur, R. P., Bandyopadhyay, R., et al. (2007). Effect of temperature and humidity regimes on grain mold sporulation and seed quality in sorghum (Sorghum bicolor (L.) Moench.) Archives of Phytopathology and Plant Protection, 40, 113–127.

    Article  Google Scholar 

  • Utkhede, R. S., & Mathur, S. (2003). Fusarium fruit rot of greenhouse peppers in Canada. Plant Disease, 87, 100.

    Article  Google Scholar 

  • Utkhede, R. S., & Mathur, S. (2004). Internal fruit rot caused by Fusarium subglutinans in greenhouse sweet peppers. Canadian Journal of Plant Pathology, 26, 386–390.

    Article  Google Scholar 

  • Utkhede, R. S., & Mathur, S. (2005). Biological and chemical control of fruit rot in greenhouse sweet peppers (Capsicum annum L.) caused by Fusarium subglutinans. Journal of Biological Sciences, 5, 610–615.

    Article  Google Scholar 

  • Van Poucke, K., Monbaliu, S., Munaut, F., Heungens, K., De Saeger, S., & Van Hove, F. (2012). Genetic diversity and mycotoxin production of Fusarium lactis species complex isolates from sweet pepper. International Journal of Food Microbiology, 153, 28–37.

    Article  CAS  PubMed  Google Scholar 

  • Velluti, A., Marin, S., Bettuci, L., Ramos, A. J., & Sanchis, V. (2000). The effect of fungal competition on colonisation of maize grain by Fusarium moniliforme, F. proliferatum, and F. graminearum and on fumonisin B1 and zearalenone formation. International Journal of Food Microbiology, 59, 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Webb, K. M., Brenner, T., & Jacobsen, B. J. (2015). Temperature effects on the interactions of sugar beet with Fusarium yellows caused by Fusarium oxysporum f. Sp. betae. Canadian Journal of Plant Pathology, 37, 353–362.

    Article  CAS  Google Scholar 

  • Wheeler, K. A., Hurdman, B. F., & Pitt, J. I. (1991). Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. International Journal of Food Microbiology, 12, 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X. (2003). Effects of environmental conditions on the development of Fusarium ear blight. European Journal of Plant Pathology, 109, 683–689.

    Article  Google Scholar 

  • Yang, J., Kharbanda, P. D., Howard, R. J., & Mirza, M. (2009). Identification and pathogenicity of Fusarium lactis, causal agent of internal fruit rot of greenhouse sweet pepper in Alberta. Canadian Journal of Plant Pathology, 31, 47–56.

    Article  Google Scholar 

  • Yang, Y., Tiesen, C., Yang, J., Howard, R. J., Kharbanda, P. D., & Strelkov, S. E. (2010). Histopathology of internal fruit rot of sweet pepper caused by Fusarium lactis. Canadian Journal of Plant Pathology, 32, 86–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by IWT (Agency for Innovation by Science and Technology, IWT-LA 135088). The authors would like to thank Kurt Heungens and Kris Van Poucke from the Institute for Agricultural and Fisheries Research (ILVO) for providing the Fusarium isolates. We would also like to thank Kristine Hauglum Holter, Ann Karin Bjørhus and Ana Catarina Aleixo Silva for their assistance in the lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Frans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frans, M., Aerts, R., Van Laethem, S. et al. Environmental effects on growth and sporulation of Fusarium spp. causing internal fruit rot in bell pepper. Eur J Plant Pathol 149, 875–883 (2017). https://doi.org/10.1007/s10658-017-1235-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1235-4

Keywords

Navigation