Skip to main content

Advertisement

Log in

Assessment of latent infection with Verticillium longisporum in field-grown oilseed rape by qPCR

European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Improvement of cultivar resistance is the key strategy to control the host-specialized pathogen Verticillium longisporum in oilseed rape (OSR). A special feature of this pathogen is its systemic, non-homogenous and delayed colonization of the plant xylem resulting in an extended symptomless period of latency. As a result, severity of infection in the field is difficult to score as it becomes apparent only at crop maturity stages when it may be confused with natural senescence. Assessment of Verticillium disease severity in OSR by visual scoring of microsclerotia on harvested stubbles unsatisfactorily reflects genotypic resistance as it is strongly affected by the ripening stage of the plant. To overcome these limitations, we developed a qPCR method, which unambiguously differentiates levels of quantitative resistance to V. longisporum in OSR genotypes under field conditions. The specificity and sensitivity of two primer pairs targeting ITS or tubulin loci in the V. longisporum genome were tested. While tubulin primers showed a high specificity to V. longisporum isolates, ITS primers exhibited a significantly higher sensitivity in detecting fungal DNA in stem tissue (limit of quantification =0.56 fg DNA) of field-grown pre-symptomatic plants. The best discrimination of resistant and susceptible OSR cultivars based on fungal DNA analysis in stem tissue was achieved at growth stage 80, at the transition of fungal vascular growth in viable plants to saprotrophic colonization of senescent stem tissues. Field screening data obtained with qPCR at growth stage 80 confirmed results from greenhouse testing thus corroborating the relevance and reliability of seedling assays for determining cultivar responses to V. longisporum in the field, as a useful tool for breeders in first selection of elite OSR genotypes with improved resistance to Verticillium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anonymous (2015). Canadian Food Inspection Agency, 16 Jan 2015.

  • Atallah, Z. K., Bae, J., Jansky, S. H., Rouse, D. I., & Stevenson, W. R. (2007). Multiplex real-time quantitative PCR to detect and quantify Verticillium dahliae colonization in potato lines that differ in response to Verticillium wilt. Phytopathology, 97, 865–872.

    Article  CAS  PubMed  Google Scholar 

  • Brandfass, C., & Karlovsky, P. (2008). Upscaled CTAB-based DNA extraction and real-time PCR assays for Fusarium culmorum and F. graminearum DNA in plant material with reduced sampling error. International Journal of Molecular Sciences, 9, 2306–2321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daebeler, F., Amelung, D. and Zeise, K. (1988). Verticillium-Welke an Winterraps-Auftreten und Bedeutung. Nachrichtenbl. Pflanzenschutz DDR, 42, 71–73.

  • Debode, J., Poucke, K. V., França, S. C., Maes, M., Höfte, M., & Heungens, K. (2011). Detection of multiple Verticillium species in soil using density flotation and real-time PCR. Plant Disease, 95, 1571–1580.

    Article  CAS  Google Scholar 

  • Depotter, J. R. L., Deketelaere, S., Inderbitzin, P., Tiedemann, A. v., Höfte, M., Subarao, K., Wood, T. A., & Thomma, B. P. H. J. (2016). Verticillium longisporum, the invisible threat of oilseed rape and other Brassicaceous plant hosts. Molecular Plant Pathology. doi:10.1111/mpp.12350.

    PubMed  Google Scholar 

  • Dunker, S., Keunecke, H., Steinbach, P., & Tiedemann, A. v. (2008). Impact of Verticillium longisporum on yield and morphology of winter oilseed rape (Brassica napus) in relation to systemic spread in the plant. Journal of Phytopathology, 156, 698–707.

    Article  Google Scholar 

  • Eynck, C., Koopmann, B., Grunewaldt-Stöcker, G., Karlovsky, P., & Tiedemann, A. v. (2007). Differential interactions of Verticillium longisporum and Verticillium dahliae with Brassica napus detected with molecular and histological techniques. European Journal of Plant Pathology, 118, 259–274.

    Article  Google Scholar 

  • Eynck, C., Koopmann, B., & Tiedemann, A. v. (2009). Identification of Brassica accessions with enhanced resistance to Verticillium longisporum under controlled and field conditions. Journal of Plant Diseases and Protection, 116, 63–72.

    Article  Google Scholar 

  • Fahleson, J., Hu, Q., & Dixelius, C. (2004). Phylogenetic analysis of Verticillium species based on nuclear and mitochondrial sequences. Archives of Microbiology, 181, 435–442.

    Article  CAS  PubMed  Google Scholar 

  • Faraggi, D., & Reiser, B. (2002). Estimation of the area under the ROC curve. Statistics in Medicine, 21, 3093–3106.

    Article  PubMed  Google Scholar 

  • Floerl, S., Druebert, C., Majcherczyk, A., Karlovsky, P., Kues, U., & Polle, A. (2008). Defence reactions in the apoplastic proteome of oilseed rape (Brassica napus Var. napus) attenuate Verticillium longisporum growth but not disease symptoms. BMC Plant Biology, 8, 129–144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Floerl, S., Druebert, C., Aroud, H. I., Karlovsky, P., & Polle, A. (2010). Disease symptoms and mineral nutrition in Arabidopsis thaliana in response to Verticillium longisporum VL43 infection. Journal of Plant Pathology, 92, 695–702.

    Google Scholar 

  • Floerl, S., Majcherczyk, A., Possienke, M., Feussner, K., Tappe, H., Gatz, C., Feussner, I., Kües, U., & Polle, A. (2012). Verticillium longisporum infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in Arabidopsis thaliana. PloS One, 7, e31435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fluss, R., Faraggi, D., & Reiser, B. (2005). Estimation of the Youden index and its associated cutoff point. Biometrical Journal, 47, 458–472.

    Article  PubMed  Google Scholar 

  • Gladders, P., Smith, J. A., Kirkpatrick, L., Clewes, E., Grant, C., Barbara, D., Barnes, A. V. and Lane, C. R. (2011). First record of verticillium wilt (Verticillium longisporum) in winter oilseed rape in the UK. New Disease Reports, 23, 8.

  • Günzelmann, H., & Paul, V. H. (1990). Zum Auftreten und zur Bedeutung der Verticillium-Welke an Raps in der Bundesrepublik Deutschland in 1989. Raps, 8(1), 23–25.

    Google Scholar 

  • Häffner, E., Karlovsky, P., & Diederichsen, E. (2010). Genetic and environmental control of the Verticillium syndrome in Arabidopsis thaliana. BMC Plant Biology, 10, 235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heale, J. B., & Karapapa, K. V. (1999). The Verticillium threat to Canada’s major oilseed crop, canola. Canadian Journal of Plant Pathology, 21, 1–7.

    Article  Google Scholar 

  • Inderbitzin, P., Bostock, R. M., Davis, R. M., Usami, T., Platt, H. W., & Subbarao, K. V. (2011). Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PloS One, 6, e28341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaac, I., & Harrison, J. A. C. (1968). The symptoms and causal agents of early-dying disease (Verticillium wilt) of potatoes. Annals of Applied Biology, 61, 231–244.

    Article  Google Scholar 

  • Keunecke, H. (2009). Einfluss von Kohlfliegenbefall auf die Infektion und Schadwirkung von Verticillium longisporum und Phoma lingam an Raps. Dissertation Universität Göttingen.

  • Larsen, R. C., Vandemark, G. J., Hughes, T. J., & Grau, C. R. (2007). Development of a real-time polymerase chain reaction assay for quantifying Verticillium albo-atrum DNA in resistant and susceptible alfalfa. Phytopathology, 97, 1519–1525.

    Article  CAS  PubMed  Google Scholar 

  • Mou, B., Klosterman, S. J., Anchieta, A. G., Wood, E. M., & Subbarao, K. (2015). Characterization of spinach germplasm for resistance against two races of Verticillium dahliae. Hortscience, 50, 1631–1635.

    Google Scholar 

  • Nutz, S., Döll, K., & Karlovsky, P. (2011). Determination of the LOQ in real-time PCR by receiver operating characteristic curve analysis: application to qPCR assays for Fusarium verticillioides and F. proliferatum. Analytical and Bioanalytical Chemistry, 401, 717–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralhan, A., Schöttle, S., Thurow, C., Iven, T., Feussner, I., Polle, A., & Gatz, C. (2012). The vascular pathogen Verticillium longisporum requires a jasmonic acid-independent COI1 function in roots to elicit disease symptoms in Arabidopsis shoots. Plant Physiology, 159, 1192–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riediger, N. (2008). Beteiligung systemischer Signale an der Symptomauslösung bei Brassica napus nach Infektion mit Verticillium longisporum und V. dahliae. Dissertation, Universität Göttingen.

  • Schnathorst (1981). Life Cycle and Epidemiology of Verticillium. In M. E. Mace, A. A. Bell, & C. H. Beckman (Eds.), Fungal wilt diseases of plants (pp. 81–111). London: Academic Press.

    Chapter  Google Scholar 

  • Steventon, L. A., Fahleson, J., Hu, Q., & Dixelius, C. (2002). Identification of the causal agent of Verticillium wilt of winter oilseed rape in Sweden, V. longisporum. Mycological Research, 106, 570–578.

    Article  CAS  Google Scholar 

  • Tyvaert, L., França, S. C., Debode, J., & Höfte, M. (2014). The endophyte Verticillium Vt305 protects cauliflower against Verticillium wilt. Journal of Applied Microbiology, 116, 1563–1571.

    Article  CAS  PubMed  Google Scholar 

  • Zeise, K. (1992). Gewächshaustest zur Resistenzprüfung von Winterraps (Brassica napus L.var. oleifera Metzger) gegen den Erreger der Rapswelke Verticillium dahliae Kleb. Nachrichtenblatt Deutscher Pflanzenschutzdienst, 44, 125–128.

    Google Scholar 

  • Zeise, K., & Seidel, D. (1990). Zur Entwicklung und Schadwirkung der Verticillium- Welkekrankheit am Winterraps. Raps, 8, 20–22.

    Google Scholar 

  • Zeise, K., & Steinbach, P. (2004). Schwarze Rapswurzeln und der Vormarsch der Verticillium-Rapswelke. Raps, 4, 170–174.

    Google Scholar 

  • Zeise, K., & Tiedemann, A. v. (2001). Morphological and physiological differentiation among vegetative compatibility groups of Verticillium dahliae in relation to V. longisporum. Journal of Phytopathology, 149, 469–475.

    Article  Google Scholar 

  • Zeise, K., & Tiedemann, A. v. (2002). Host specialization among vegetative compatibility groups of Verticillium dahliae in relation to Verticillium longisporum. Journal of Phytopathology, 150, 112–119.

    Article  Google Scholar 

  • Zhou, L., Hu, Q., Johansson, A., & Dixelius, C. (2006). Verticillium longisporum and V. dahliae: infection and disease in Brassica napus. Plant Pathology, 55, 137–144.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by GFP (an association for the promotion of private plant breeding in Germany), BMEL (German Federal Ministry for Food and Agriculture) and FNR (Federal Agency for Renewable Resources, Gülzow, Germany). We thank the breeding companies within GFP for cooperation and providing plant material. Jutta Schaper, Dagmar Tacke and Heike Rollwage are gratefully acknowledged for their excellent technical assistance in the field, greenhouse and laboratory experiments. We thank Sabine Nutz for her support in ROC curve data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Knüfer.

Electronic supplementary material

Supplementary Fig. 1

Receiver operating characteristic (ROC) curve from quantitative real-time PCR with ITS primers amplification of V. longisporum DNA extracted from stems of field grown oilseed rape. (PDF 24 kb)

Supplementary Fig. 2

Correlation between visual disease assessment (stubble disease index) and qPCR analyses (fungal DNA in stem tissue) in four field grown susceptible and resistant winter oilseed rape cultivars. VL, Verticillium longisporum. DW, dry weight. (PDF 4 kb)

Supplementary Fig. 3

Net AUDPC values (A) and relative stunting (B) showing V. longisporum disease severity in susceptible and resistant winter oilseed rape cultivars under greenhouse conditions at 28 dpi. Data are means of three independent experiments. Bars indicate standard deviations. Express and Oase are resistant reference cultivars. Laser and Falcon are susceptible reference cultivars. Means with the same letter are not significantly different at P = 0.05. (PDF 351 kb)

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knüfer, J., Lopisso, D.T., Koopmann, B. et al. Assessment of latent infection with Verticillium longisporum in field-grown oilseed rape by qPCR. Eur J Plant Pathol 147, 819–831 (2017). https://doi.org/10.1007/s10658-016-1045-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1045-0

Keywords

Navigation