Skip to main content

Advertisement

Log in

Assessment of the impact of the fumigant dimethyl disulfide on the dynamics of major fungal plant pathogens in greenhouse soils

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Soil fumigants constitute a major tool for the control of soil borne fungal plant pathogens in protected crops. Dimethyl disulfide (DMDS) is a novel soil fumigant used either alone or in combination with other fumigants for the control of soil borne pests and diseases. In a commercial greenhouse for tomato production, we evaluated the impact of DMDS, comparatively to the alternative fumigant metam sodium, on the population of the dominant fungal plant pathogens in the study soil via q-PCR. Prior to soil fumigation, estimation of the fungal diversity in the studied soil via clone libraries identified Fusarium oxysporum and Rhizoctonia solani as the most abundant soil borne plant pathogens, while Cladosporium spp., known as opportunistic airborne tomato pathogens, were the most dominant fungi and based on this their dynamics upon fumigation was also studied. DMDS, at two dose rates, induced a drastic reduction in the population of F. oxysporum and R. solani, which lasted for the whole cultivation season. On the contrary, metam sodium exhibited an inhibitory effect on F. oxysporum that was alleviated at 120 d post fumigation. Both DMDS and metam sodium induced only a temporal reduction in the soil population of Cladosporium sp. which recovered by 60 days post fumigation. Our data suggest that DMDS even at the low dose rate (56.4 g m−2) could drastically reduce the population of the major soil borne tomato pathogens F. oxysporum and R. solani. Establishment of population thresholds as determined by q-PCR could represent a valuable tool for the estimation of the risk for disease severity and crop yield losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnault, I., Fleurance, C., Vey, F., Fretay, G. D., & Auger, J. (2013). Use of Alliaceae residues to control soil-borne pathogens. Industrial Crops and Products, 49, 265–272.

    Article  CAS  Google Scholar 

  • Bartz, F. E., Cubeta, M. A., Toda, T., Naito, S., & Ivors, K. L. (2010). An in planta method for assessing the role of basidiospores in Rhizoctonia foliar disease of tomato. Plant Disease, 94, 515–520.

    Article  CAS  Google Scholar 

  • Basallote-Ureba, M. J., Vela-Delgado, M. D., Maclas, F. J., Lope-Herrera, C. J., & Melero-Vara, J. M. (2010). Soil chemical treatments for the control of fusarium wilt of carnation in Spain. Acta Horticulturae, 883, 175–180.

    Article  Google Scholar 

  • Belova, A., Narayan, T., & Olkin, I. (2013). Methyl bromide alternatives for strawberry and tomato pre-plant uses: A meta-analysis. Crop Protection, 54, 1–14.

    Article  CAS  Google Scholar 

  • Bending, G. D., & Lincoln, S. D. (2002). Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Soil Biology and Biochemistry, 32, 1261–1269.

    Article  Google Scholar 

  • Bensch, K., Groenewald, J. Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B. A., Shin, H. D., Dugan, F. M., Schroers, H. J., Braun, U., & Crous, P. W. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology, 67, 1–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budge, G. E., Shaw, M. W., Colyer, A., Pietravalle, S., & Boonham, N. (2009). Molecular tools to investigate Rhizoctonia solani distribution in soil. Plant Pathology, 58, 1071–1080.

    Article  CAS  Google Scholar 

  • Cabrera, J. A., Wang, D., Gerik, J. S., & Gan, J. (2014). Spot drip application of dimethyl disulfide as a post-plant treatment for the control of plant parasitic nematodes and soilborne pathogens in grape production. Pest Management Science, 71, 1151–1157.

    Article  Google Scholar 

  • Cai, G., Gale, L. R., Schneider, R. W., Kistler, H. C., Davis, R. M., Elias, K. S., & Miyao, E. M. (2003). Origin of race 3 of Fusarium oxysporum f. sp. lycopersici at a single site in California. Phytopathology, 93, 1014–1022.

    Article  CAS  PubMed  Google Scholar 

  • Coats, V. C., Pelletreau, K. N., & Rumpho, M. E. (2014). Amplicon pyrosequencing reveals the soil microbial diversity associated with invasive Japanese barberry (Berberisthun bergii DC.). Molecular Ecology, 23, 1318–1332.

    Article  CAS  PubMed  Google Scholar 

  • Curto, G., Dongiovanni, C., Sasanelli, N., Santori, A., & Myrta, A. (2014). Efficacy of dimethyl disulfide (DMDS) in the control of the root-knot nematode Meloidogyne incognita and the cyst nematode Heterodera carotae on carrot in field condition in Italy. Proc. VIIIth IS on chemical and non-chemical soil and Substrate disinfestation. eds.: M.L. Gullino et al. Acta Horticulturae 1044. ISHS, 2014, 405–410.

    Google Scholar 

  • Dangi, S. R., Tirado-Corbala, R., Cabrera, J. A., Wang, D., & Gerik, J. (2013). Soil biotic and abiotic responses to dimethyl disulfide spot drip fumigation in established grape vines. Soil Science Society of America Journal, 78, 520–530.

    Article  Google Scholar 

  • Debode, J., Van Poucke, K., França, S. C., Maes, M., Höfte, M., & Heungens, K. (2011). Detection of multiple Verticillium species in soil using density flotation and real-time polymerase chain reaction. Plant Disease, 95, 1571–1580.

    Article  CAS  Google Scholar 

  • Duniway, J. M. (2002). Status of chemical alternatives to methyl bromide for pre-plant fumigation in soil. Phytopathology, 92, 1337–1343.

    Article  CAS  PubMed  Google Scholar 

  • Edel, V., Steinberg, C., Gautheron, N., Recorbet, G., & Allabouvette, C. (2001). Genetic diversity of Fusarium oxysporum populations isolated from different soils in France. FEMS Microbiology Ecology, 36, 61–71.

    Article  CAS  PubMed  Google Scholar 

  • El-Deeb, H. M., & Arab, Y. A. (2013). Acremonium as an endophytic bioagent against date palm fusarium wilt. Archives of Phytopathology and Plant Protection, 46, 1214–1221.

    Article  CAS  Google Scholar 

  • Flannigan, B. (2001). Microorganisms in indoor air. In R. A. Samson & J. D. Miller (Eds.), Microorganisms in Home and indoor work Environments: diversity, Health Impacts, Investigation and control (Flannigan B (pp. 17–31). London: Taylor & Francis.

    Chapter  Google Scholar 

  • Fritsch, J. (2005). Dimethyl disulfide as a new chemical potential alternative to methyl bromide in soil disinfestation in France. Acta Horticulturae, 698, 71–76.

    Article  CAS  Google Scholar 

  • Fritsch, J., Fouillet, T., Charles, P., Fargier-Puech, P., Ramponi-Bur, C., Descamps, S., Du Fretay, G., & Myrta, A. (2014). French experiences with dimethyl disulfide (DMDS) as a nematicide in vegetable crops. Proc. VIIIth IS on chemical and non-chemical soil and Substrate disinfestation. eds.: M.L. Gullino et al. Acta Horticulturae 1044. ISHS, 2014, 427–434.

    Google Scholar 

  • Gange, A. C., Eschen, R., Wearn, J. A., Thawer, A., & Sutton, B. C. (2012). Differential effects of foliar endophytic fungi on insect herbivores attacking a herbaceous plant. Oecologia, 168, 1023–1031.

    Article  PubMed  Google Scholar 

  • Gerik, J. S. (2005). Evaluation of soil fumigants applied by drip irrigation for Liatris production. Plant Disease, 89, 883–887.

    Article  Google Scholar 

  • Giannakou, I. O., & Karpouzas, D. G. (2003). Evaluation of chemical and integrated strategies as alternatives to methyl bromide for the control of root-knot nematodes in Greece. Pest Management Science, 59, 883–892.

    Article  CAS  PubMed  Google Scholar 

  • Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 43, 45–63.

    Article  Google Scholar 

  • Hirano, Y., & Arie, T. (2006). PCR-based differentiation of Fusarium oxysporum f. sp. lycopersici and radicis-lycopersici and races of F. oxysporum f. sp. lycopersici. Journal of General Plant Pathology, 72, 273–283.

    Article  CAS  Google Scholar 

  • Hollins, P. D., Kettlewell, P. S., Atkinson, M. D., Stephenson, D. B., Corden, J. M., Millington, W. M., & Mullins, J. (2004). Relationships between airborne fungal spore concentration of Cladosporium and the summer climate at two sites in Britain. International Journal of Biometeorology, 48, 137–141.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, I., Namiki, F., & Tsuge, T. (2002). Plant colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein. Plant Cell, 14, 1869–1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpouzas, D. G., Karatasas, A., Spyridaki, E., Rousidou, C., Bekris, F., Ehaliotis, C., & Papadopoulou, K. K. (2011). Impact of a beneficial and of a pathogenic Fusarium strain on the fingerprinting-based structure of microbial communities in tomato (Lycopersicon esculentum Milll.) rhizosphere. European Journal of Soil Biology, 47, 400–408.

    Article  Google Scholar 

  • Kernaghan, G., Reeleder, R. D., & Hoke, S. M. T. (2008). Quantification of Pythium populations in ginseng soils by culture dependent and real-time PCR methods. Applied Soil Ecology, 40, 447–455.

    Article  Google Scholar 

  • Kirkegaard, J. A., & Sarwar, M. (1998). Biofumigation potential of brassicas I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant and Soil, 201, 71–89.

    Article  CAS  Google Scholar 

  • Lenc, L., Kwasna, H., Sadowski, C., & Grabowski, A. (2015). Microbiota in wheat roots, rhizosphere and soil in crops grown in organic and other production systems. Journal of Phytopathology, 163, 245–263.

    Article  CAS  Google Scholar 

  • Li, Y., Garibaldi, A., & Gullino, M. L. (2010). Molecular detection of Fusarium oxysporum f. sp. chrysanthemi on three host plants: Gerbera jamesonii, Osteospermum sp. and Argyranthemum frutescens. Journal of Plant Pathology, 92, 515–520.

    Google Scholar 

  • Li, Y., Mao, L., Yan, D., Ma, T., Shen, J., Guo, M., Wang, Q., Ouyang, C., & Cao, A. (2014). Quantification of Fusarium oxysporum in fumigated soils by a newly developed real-time PCR assay to assess the efficacy of fumigants for fusarium wilt disease in strawberry plants. Pest Management Science, 70, 1669–1675.

    Article  CAS  PubMed  Google Scholar 

  • Lievens, B., Brouwer, M., Vanachter, A. C. R. C., Levesque, C. A., Camue, B. P. A., & Thomma, B. P. H. J. (2005). Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environmental Microbiology, 7, 1698–1710.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y., Gentry, T., Hu, P., Pierson, E., Gu, M., & Yin, S. (2015). Impact of brassicaceous seed meals on the composition of the soil fungal community and the incidence of fusarium wilt on chili pepper. Applied Soil Ecology, 90, 41–48.

    Article  CAS  Google Scholar 

  • Mao, L., Yan, D., Wang, Q., Li, Y., Ouyang, C., Liu, P., Shen, J., Guo, M., & Cao, A. (2014). Evaluation of the combination of dimethyl disulfide and dazomet as an efficient methyl bromide alternative for cucumber production in China. Journal of Agricultural and Food Chemistry, 62, 4864–4869.

    Article  CAS  PubMed  Google Scholar 

  • Mirtalebi, M., Banihashemi, Z., & Linde, C. C. (2013). Phylogenetic relationships of Fusarium oxysporum f. sp. melonis in Iran. European Journal of Plant Pathology, 136, 749–762.

    Article  CAS  Google Scholar 

  • Mullins, J. (2001). Microorganisms in outdoor air. In R. A. Samson & J. D. Miller (Eds.), Microorganisms in Home and indoor work Environments: diversity, Health Impacts, Investigation and control (Flannigan B (pp. 3–16). London: Taylor & Francis.

    Google Scholar 

  • Omirou, M., Karpouzas, D. G., Papadopoulou, K. K., & Ehaliotis, C. (2013). The decomposition of pure and plant – derived glucosinolates in soil. European Journal of Soil Biology, 56, 49–55.

    Article  CAS  Google Scholar 

  • Rivas, S., & Thomas, C. M. (2005). Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annual Review of Phytopathology, 43, 395–436.

    Article  CAS  PubMed  Google Scholar 

  • Rousidou C, Papadopoulou E, Kortsinidou M, Giannakou IO, Singh BK, Menkissoglou-Spiroudi U, Karpouzas DG (2013) Bio-pesticides: harmful or harmless to ammonia oxidizing microorganisms? The case of a Paecilomyces lilacinus-based nematicide. Soil Biology & Biochemistry, 67 98–105.

  • Sarwar, M., Kirkegaard, J. A., Wong, P. T. W., & Desmarchelier, J. M. (1998). Biofumigation potential of brassicas III in vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant and Soil, 201, 103–112.

    Article  CAS  Google Scholar 

  • Sasanelli, N., Dongiovanni, C., Santori, A., & Myrta, A. (2014). Control of the root-knot nematode Meloidogyne incognita by dimethyl disulfide (DMDS) applied in drip irrigation on melon and tomato in Apulia and Basilicata (Italy). Proc. VIIIth IS on chemical and non-chemical soil and Substrate disinfestation. eds.: M.L. Gullino et al. Acta Horticulturae 1044. ISHS, 2014, 401–404.

    Google Scholar 

  • Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., & Chen, W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences, 109, 6241–6246.

    Article  CAS  Google Scholar 

  • Siles, J. A., Pascual, J., González-Menéndez, V., Sampedro, I., García-Romera, I., et al. (2014). Short-term dynamics of culturable bacteria in a soil amended with biotransformed dry olive residue. Systems of Applied Microbiology, 37, 113–120.

    Article  CAS  Google Scholar 

  • Singleton, L. L., Mihail, J. D., & Rush, C. M. (1992). Methods for research on soil borne phytopathogenic fungi. St. Paul, MN, USA: APS Press.

    Google Scholar 

  • Soytong, K., Kanokmedhakul, S., Kukongviriyapa, V., & Isobe, M. (2001). Application of Chaetomium species (Ketomium) as a new broad spectrum biological fungicide for plant disease control: A review article. Fungal Diversity, 7, 1–15.

    Google Scholar 

  • Termorshuizen, A. J., Davis, J. R., Gort, G., Harris, D. C., Huisman, O. C., Lazarovits, G., et al. (1998). Inter-laboratory comparison of methods to quantify microsclerotia of Verticillium dahliae in soil. Applied and Environmental Microbiology, 64, 3846–3853.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorn, R. G., Reddy, C. A., Harris, D., & Paul, E. A. (1996). Isolation of saprophytic Basidiomycetes from soil. Applied and Environmental Microbiology, 62, 4288–4292.

    CAS  PubMed  Google Scholar 

  • Vakalounakis, D. J., & Williams, P. H. (1989). A cotyledon screen for resistance to scab (Cladosporium cucumerinum) in cucumber (Cucumis sativus) seedlings. Annals of Applied Biology, 115, 443–450.

    Article  Google Scholar 

  • Yan, L., Zhang, C., Ding, L., & Ma, Z. (2008). Development of a real-time PCR assay for the detection of Cladosporium fulvum in tomato leaves. Journal of Applied Microbiology, 104, 1417–1424.

    Article  CAS  PubMed  Google Scholar 

  • Yan, D., Wang, Q., Mao, L., Li, W., Xie, H., Guo, M., & Cao, A. (2013). Quantification of the effects of various soil fumigation treatments on nitrogen mineralization and nitrification in laboratory incubation and field studies. Chemosphere, 90, 1210–1215.

    Article  CAS  Google Scholar 

  • Zheng, Q.-Y., Westermark, S.-O., Rasmunson-Lestander, A., & Wang, X.-R. (2005). Detection and quantification of Cladosporium in aerosols by real-time PCR. Journal of Environmental Monitoring, 8, 153–160.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financial supported by the agrochemical company K + N EFTHYMIADIS (Project No. 4703) and by the Postgraduate Program “Biotechnology- Quality assessment in Nutrition and the Environment”, Department of Biochemistry and Biotechnology, University of Thessaly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios G. Karpouzas.

Electronic supplementary material

ESM 1

Supplementary Data Figure 1 (PPT 79 kb)

ESM 2

Supplementary Data Figure 2 (PPT 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papazlatani, C., Rousidou, C., Katsoula, A. et al. Assessment of the impact of the fumigant dimethyl disulfide on the dynamics of major fungal plant pathogens in greenhouse soils. Eur J Plant Pathol 146, 391–400 (2016). https://doi.org/10.1007/s10658-016-0926-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0926-6

Keywords

Navigation