Skip to main content
Log in

Intercepted isolates of Xylella fastidiosa in Europe reveal novel genetic diversity

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

After the first confirmed outbreak of Xylella fastidiosa in the European Union (EU), associated with an olive disease denoted olive quick decline syndrome, mandatory surveys are now carried out in the member States and inspections increased at EU entry points such as ports. Such activities led to the interception of X. fastidiosa-infected coffee plants in consignments originating from Central America. Similarly, the geographic expansion of the olive decline epidemic area of the Apulia region (southern Italy) prompted investigations to identify new host plants. Here we report the interception of three novel bacterial sequence types in Italy, based on multi-locus sequence typing, that cluster with different X. fastidiosa subspecies, illustrating the risk of the introduction of additional pathogen genetic diversity into Europe. In the epidemic area of Apulia, new foci as well as host plant species positive with X. fastidiosa, including cherry, myrtleleaf and rosemary, were found to be all infected with the same sequence type of this bacterium (ST53, or CoDiRO strain). This work highlights the limited knowledge of X. fastidiosa phylogenetic and phenotypic diversity, the risk of novel X. fastidiosa introductions via contaminated plant material, and corroborates other studies indicating that the Apulia epidemic emerged from a single introduction of this pathogen into the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida, R.P.P., & Nunney, L. (2015). How do plant diseases caused by Xylella fastidiosa emerge? Plant Disease, http://dx.doi.org/10.1094/PDIS-02-15-0159-FE.

  • Almeida, R. P. P., & Purcell, A. H. (2003). Biological traits of Xylella fastidiosa strains from grapes and almonds. Applied and Environmental Microbiology, 69, 7447–7452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida, R. P. P., Pereira, E. F., Purcell, A. H., & Lopes, J. R. S. (2001). Multiplication and movement of a citrus strain of Xylella fastidiosa within sweet Orange. Plant Disease, 85, 382–386.

    Article  Google Scholar 

  • Almeida, R. P. P., Blua, M. J., Lopes, J. R. S., & Purcell, A. H. (2005). Vector transmission of Xylella fastidiosa: applying fundamental knowledge to generate disease management strategies. Annals of the Entomological Society of America, 98, 775–786.

    Article  Google Scholar 

  • Almeida, R. P. P., Nascimento, F. E., Chau, J., Prado, S. S., Tsai, C. W., Lopes, S. A., & Lopes, J. R. S. (2008). Genetic structure and biology of Xylella fastidiosa causing disease in citrus and coffee in Brazil. Applied and Environmental Microbiology, 74, 3690–3701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amanifar, N., Taghavi, M., Izadpanah, K., & Babaei, G. (2014). Isolation and pathogenicity of Xylella fastidiosa from grapevine and almond in Iran. Phytopathologia Mediterranea, 53, 318–327.

    CAS  Google Scholar 

  • Bergsma-Vlami, M., van de Bilt, J. L. J., Tjou-Tam-Sin, N. N. A., van de Vossenberg, B. T. L. H., & Westenberg, M. (2015). Xylella fastidiosa in Coffea arabica ornamental plants imported from Costa Rica and Honduras in The Netherlands. Journal of Plant Pathology, 97, 395.

    Google Scholar 

  • Berisha, B., Chen, Y. D., Zhang, G. Y., Xu, B. Y., & Chen, T. A. (1998). Isolation of Pierce’s disease bacteria from grapevines in Europe. European Journal of Plant Pathology, 104, 427–433.

    Article  Google Scholar 

  • Cariddi, C., Saponari, M., Boscia, D., De Stradis, A., Loconsole, G., Nigro, F., Porcelli, F., Potere, O., & Martelli, G. P. (2014). Isolation of a Xylella fastidiosa strain infecting olive and oleander in Apulia, Italy. Journal of Plant Pathology, 96, 1–5.

    Google Scholar 

  • Daugherty, M. P., Lopes, J. R. S., & Almeida, R. P. P. (2010). Strain-specific alfalfa water stress induced by Xylella fastidiosa. European Journal of Plant Pathology, 127, 333–340.

    Article  Google Scholar 

  • Elbeaino, T., Valentini, F., Abou Kubaa, R., Moubarak, P., Yaseen, T., & Digiaro, M. (2014). Multilocus sequence typing of Xylella fastidiosa isolated from olive affected by “olive quick decline syndrome” in Italy. Phytopathologia Mediterranea, 53, 533–542.

    CAS  Google Scholar 

  • European and Mediterranean Plant Protection Organization (2015). EPPO reporting service. No. 9, Paris, 2015–09, 21p.

  • European Food Safety Authority (2015a). Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA Journal, 13, 3989[262 pp]. doi:10.2903/j.efsa.2015.3989.

    Article  Google Scholar 

  • European Food Safety Authority (2015b). Categorisation of plants for planting, excluding seeds, according to the risk of introduction of Xylella fastidiosa. EFSA Journal, 13, 4061. doi:10.2903/j.efsa.2015.4061.

    Article  Google Scholar 

  • Hudson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.

    Article  Google Scholar 

  • Jolley, K. A., Chan, M. S., Martin, C. J., & Maiden, M. C. (2004). mlstdbNet – distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics, 5, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kung, S. H., & Almeida, R. P. P. (2011). Natural competence and recombination in the plant pathogen Xylella fastidiosa. Applied and Environmental Microbiology, 77, 5278–5284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre, B., Mississipi, S., Oliver, V., Morel, E., Crouzillat, D., Durand, K., Portier, P., Poliakoff, F., & Jacques, M. A. (2014). Identification and characterisation of Xylella fastidiosa isolated from coffee plants in France. Journal of Plant Pathology, 96, S4.100.

    Google Scholar 

  • Leu, L. S., & Su, C. C. (1993). Isolation, cultivation and pathogenicity of Xylella fastidiosa, the causal bacterium of pear leaf scorch disease in Taiwan. Plant Disease, 77, 642–646.

    Article  Google Scholar 

  • Loconsole, G., Boscia, D., Palmisano, F., Savino, V., Potere, O., Martelli, G. P., & Saponari, M. (2014). A Xylella fastidiosa strain with unique biology and phylogeny is associated with a severe disease of olive in Southern Apulia. Journal of Plant Pathology, 96, S4.38.

    Google Scholar 

  • Martelli, G. P., Boscia, D., Porcelli, F., & Saponari, M. (2015). The olive quick decline syndrome in south-East Italy: a threatening phytosanitary emergency. European Journal of Plant Pathology. doi:10.1007/s10658-015-0784-7.

    Google Scholar 

  • Martin, D., & Rybicki, E. (2000). RDP: detection of recombination amongst aligned sequences. Bioinformatics, 16, 562–563.

    Article  CAS  PubMed  Google Scholar 

  • McElrone, A. J., Sherald, J. L., & Forseth, I. N. (2003). Interactive effects of water stress and xylem-limited bacterial infection on the water relations of a host vine. Journal of Experimental Botany, 54, 419–430.

    Article  CAS  PubMed  Google Scholar 

  • Nunes, L. R., Rosato, Y. B., Muto, N. H., Yanai, G. M., Da Silva, V. S., Leite, D. B., Gonçalves, E. R., De Souza, A. A., Coletta-Filho, H. D., Machado, M. A., Lopes, S. A., & De Oliveira, R. C. (2003). Microarray analyses of Xylella fastidiosa provide evidence of coordinated transcription control of laterally transferred elements. Genome Research, 13, 570–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunney, L., Yuan, X. L., Bromley, R., Hartung, J., Montero-Astua, M., Moreira, L., Ortiz, B., & Stouthamer, R. (2010). Population genomic analysis of a bacterial plant pathogen: novel insight into the origin of Pierce’s disease of grapevine in the US. PloS One, 5, e15488. doi:10.1371/journal.pone.0015488.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunney, L., Yuan, X., Bromley, R. E., & Stouthamer, R. (2012). Detecting genetic introgression: high levels of intersubspecific recombination found in Xylella fastidiosa in Brazil. Applied and Environmental Microbiology, 78, 4702–4714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunney, L., Vickerman, D. B., Bromley, R. E., Russell, S. A., Hartman, J. R., Morano, L. D., & Stouthamer, R. (2013). Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States. Applied and Environmental Microbiology, 79, 2189–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunney, L., Ortiz, B., Russell, S. A., Ruiz Sa, R., & Stouthamer, R. (2014a). The complex biogeography of the plant pathogen Xylella fastidiosa: genetic evidence of introductions and subspecific introgression in Central America. PloS One, 9, e112463.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunney, L., Schuenzel, E. L., Scally, M., Bromley, R. E., & Stouthamer, R. (2014b). Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry. Applied and Environmental Microbiology, 80, 3025–3033.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunney, L., Hopkins, D. L., Morano, L. D., Russell, S. E., & Stouthamer, R. (2014c). Intersubspecific recombination in Xylella fastidiosa strains native to the United States: infection of novel hosts associated with an unsuccessful invasion. Applied and Environmental Microbiology, 80, 1159–1169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  • Purcell, A. H. (1997). Xylella fastidiosa, a regional problem or global threat? Journal of Plant Pathology, 79, 99–105.

    Google Scholar 

  • Purcell, A. H., & Saunders, S. R. (1999). Glassy-winged sharpshooters expected to increase plant disease. California Agriculture, 53, 26–27.

    Article  Google Scholar 

  • Rathé, A. A., Pilkington, L. J., Gurr, G. M., Hoddle, M. S., Daugherty, M. P., Constable, F. E., Luck, J. E., Powell, K. S., Fletcher, M. J., & Edwards, O. R. (2012). Incursion preparedness: anticipating the arrival of an economically important plant pathogne Xylella fastidiosa Wells (proteobacteria: xanthomonadaceae) and the insect vector Homalodisca vitripennis (germar) (hemiptera: cicadellidae) in Australia. Austral Entomology, 51, 209–220.

    Article  Google Scholar 

  • Saponari, M., Boscia, D., Nigro, F., & Martelli, G. P. (2013). Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). Journal of Plant Pathology, 95, 668.

    Google Scholar 

  • Saponari, M., Boscia, D., Loconsole, G., Palmisano, F., Savino, V., Potere, O., & Martelli, G. P. (2014). New hosts of Xylella fastidiosa strain CoDiRO in Apulia. Journal of Plant Pathology, 96, 603–611.

    Google Scholar 

  • Su, C. C., Chang, C. J., Chang, C. M., Shih, H. T., Tzeng, K. C., Jan, F. J., Kao, C. W., & Deng, W. L. (2013). Pierce’s disease of grapevines in Taiwan: isolation, cultivation and pathogenicity of Xylella fastidiosa. Journal of Phytopathology, 161, 389–396.

    Article  CAS  Google Scholar 

  • Swofford, D. L. (2002). PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland: Sinauer Associates.

    Google Scholar 

  • Yuan, X., Morano, L., Bromley, R., Spring-Pearson, S., Stouthamer, R., & Nunney, L. (2010). Multilocus sequence typing of Xylella fastidiosa causing Pierce’s disease and oleander Leaf Scorch in the United States. Phytopathology, 100, 601–611.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Regional Plant Health Service of Apulia. We thank Alessandra Calzolari (Plant health Service Emilia Romagna, Italy), Valeria Gualandri (Fondazione Edmund Mach, S. Michele all’Adige (TN), Italy) and Anna Zelger (Provincia Autonoma di Bolzano − Alto Adige, Italy) for providing the coffee isolates. We thank Len Nunney for working with us on the new MLST alleles and STs. Work by RPPA was supported by the California Agriculture Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. P. Almeida.

Ethics declarations

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the authors.

Conflict of interest

The authors declare no conflict of interest.

Additional information

G. Loconsole and M. Saponari contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loconsole, G., Saponari, M., Boscia, D. et al. Intercepted isolates of Xylella fastidiosa in Europe reveal novel genetic diversity. Eur J Plant Pathol 146, 85–94 (2016). https://doi.org/10.1007/s10658-016-0894-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0894-x

Keywords

Navigation