Skip to main content
Log in

Proteome profiling of the compatible interaction between wheat and stripe rust

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Over the last decade, comparative molecular profiling studies between compatible and incompatible plant-pathogen interactions have shown that susceptible response of the host to a pathogen requires factors that promote disease development. In this study, we examined proteome profiles during a compatible interaction between wheat and stripe rust. A 2D-LC system (ProteomeLab PF2D) was used for protein separation and to compare the proteome from infected and control samples. More than 700 protein peaks at each time point were compared between pathogen- and mock-inoculated samples. Selected proteins, with significant differences in abundance were identified by nanoLC-ESI- MS/MS and generated spectra were searched against the wheat protein databases from UniProt, and NCBI and the Puccinia database from The Broad Institute. In total, the identified proteins comprised of 62 % wheat and 38 % Pst proteins. All identified proteins were searched by bioinformatics-based algorithms to detect their subcellular localization and signal peptide motifs which have the potential to catch the candidate effector proteins. The wheat proteins were classified based on their function. Although a compatible interaction, many wheat proteins, such as antioxidants, PRs and cold-responsive proteins, are implicated in defense and stress tolerance. On the pathogen side, 64 proteins were identified, and included some important pathogenicity proteins that can play role in pathogen virulence and suppress the host defense. In addition, we discovered that nine proteins have a signal sequence and three of the hypothetical fungal proteins, PGTG_11681T0, PGTG_07231T0 and CBH50687.1, have been tentatively identified as candidate effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal, G. K., Jwa, N. S., Lebrun, M. H., Job, D., & Rakwal, R. (2010). Plant secretome: unlocking secrets of the secreted proteins. Proteomics, 10(4), 799–827.

    Article  CAS  PubMed  Google Scholar 

  • Alkan, N., Espeso, E. A., & Prusky, D. (2013). Virulence regulation of phytopathogenic fungi by pH. Antioxidants & Redox Signaling, 19, 1012–1025.

    Article  CAS  Google Scholar 

  • Barré, O., & Solioz, M. (2006). Improved protocol for chromatofocusing on the ProteomeLab PF2D. Proteomics, 6, 5096–5098.

    Article  PubMed  Google Scholar 

  • Bertini, L., Caporale, C., Testa, M., Proietti, S., & Caruso, C. (2009). Structural basis of the antifungal activity of wheat PR4 proteins. FEBS Letters, 583, 2865–2871.

    Article  CAS  PubMed  Google Scholar 

  • Bertini, L., Leonardi, L., Caporale, C., Tucci, M., Cascone, N., Di Berardino, I., Buonocore, V., & Caruso, C. (2003). Pathogen-responsive wheat PR4 genes are induced by activators of systemic acquired resistance and wounding. Plant Science, 164, 1067–1078.

    Article  CAS  Google Scholar 

  • Blanco-Ulate, B., Rolshausen, P., & Cantu, D. (2013). Draft genome sequence of Neofusicoccum parvum isolate UCR-NP2, a fungal vascular pathogen associated with grapevine cankers. Genome Announc, 1(3), e00339–e00313.

    PubMed  PubMed Central  Google Scholar 

  • Blilou, I., Ocampo, J. A., & García-Garrido, J. M. (2000). Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. Journal of Experimental Botany, 51, 1969–1977.

    Article  CAS  PubMed  Google Scholar 

  • Boller, T. (1995). Chemoperception of microbial signals in plant cells. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 189–214.

    Article  CAS  Google Scholar 

  • Bozkurt, T. O., McGrann, G. R. D., MacCormack, R., Boyd, L. A., & Akkaya, M. S. (2010). Cellular and transcriptional responses of wheat during compatible and incompatible race-specific interactions with Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 11, 625–640.

    CAS  PubMed  Google Scholar 

  • Caillaud, M.-C., Asai, S., Rallapalli, G., Piquerez, S., Fabro, G., et al. (2013). A downy mildew effector attenuates salicylic acid–triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biology, 11(12), e1001732.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caporale, C., Di Berardino, I., Leonardi, L., Bertini, L., Cascone, A., Buonocore, V., & Caruso, C. (2004). Wheat pathogenesis-related proteins of class 4 have ribonuclease activity. FEBS Letters, 575, 71–76.

    Article  CAS  PubMed  Google Scholar 

  • Caruthers, J., Zucker, F., Worthey, E., Myler, P. J., Buckner, F., Van Voorhuis, W., Mehlin, C., Boni, E., Feist, T., Luft, J., et al. (2005). Crystal structures and proposed structural/functional classification of three protozoan proteins from the isochorismatase superfamily. Protein Science, 14, 2887–2894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Smet, I., Voss, U., Jürgens, G., & Beeckman, T. (2009). Receptor-like kinases shape the plant. Nature Cell Biology, 11, 1166–1173.

    Article  PubMed  Google Scholar 

  • Dixon, M. S., Golstein, C., Thomas, C. M., van der Biezen, E. A., & Jones, J. D. G. (2000). Genetic complexity of pathogen perception by plants: the example of Rcr3, a tomato gene required specifically by Cf-2. Proceedings of the National Academy of Sciences of the United States of America, 97(16), 8807–8814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.

    Article  CAS  PubMed  Google Scholar 

  • Eckardt, N. A. (2008). Chitin signaling in plants: insights into the perception of fungal pathogens and rhizobacterial symbionts. Plant Cell, 20, 241–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Bebany, A. F., Rampitsch, C., & Daayf, F. (2010). Proteomic analysis of the phytopathogenic soilborne fungus Verticillium dahliae reveals differential protein expression in isolates that differ in aggressiveness. Proteomics, 10, 289–303.

    Article  CAS  PubMed  Google Scholar 

  • Elvira, M. I., Galdeano, M. M., Gilardi, P., García-Luque, I., & Serra, M. T. (2008). Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. Journal of Experimental Botany, 59, 1253–1265.

    Article  CAS  PubMed  Google Scholar 

  • Fang, X., Jost, R., Finnegan, P. M., & Barbetti, M. J. (2013). Comparative proteome analysis of the strawberry-Fusarium oxysporum f. sp. fragariae pathosystem reveals early activation of defense responses as a crucial determinant of host resistance. Journal of Proteome Research, 12, 1772–1788.

    Article  CAS  PubMed  Google Scholar 

  • Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A., & Keller, B. (2003). Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the United States of America, 100, 15253–15258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcı́a-Limones, C., Hervás, A., Navas-Cortés, J. A., Jiménez-Dı́az, R. M., & Tena, M. (2002). Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp.ciceris. Physiological and Molecular Plant Pathology, 61, 325–337.

    Article  Google Scholar 

  • Ge, X., Chen, J., Li, N., Lin, Y., Sun, C., & Cao, K. (2003). Resistance function of rice lipid transfer protein LTP110. Biochem Mol Biol, 36, 603–607.

    Article  CAS  Google Scholar 

  • Glazebrook, J., Rogers, E. E., & Ausubel, F. M. (1997). Use of Arabidopsis for genetic dissection of plant defense responses. Annual Review of Genetics, 31(1), 547–569.

    Article  CAS  PubMed  Google Scholar 

  • Grant, M. R., & Jones, J. D. G. (2009). Hormone (dis)harmony moulds plant health and disease. Science, 324, 750–752.

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack, K. E., & Jones, J. D. (1996). Resistance gene-dependent plant defense responses. Plant Cell, 8, 1773–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogenhout, S. A., Van der Hoorn, R. A. L., Terauchi, R., & Kamoun, S. (2009). Emerging concepts in effector biology of plant-associated organisms. Molecular Plant-Microbe Interactions, 22, 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Research, 35(suppl 2): W585-W587.

  • Hou, M., Xu, W., Bai, H., Liu, Y., Li, L., Liu, L., Liu, B., & Liu, G. (2012). Characteristic expression of rice pathogenesis-related proteins in rice leaves during interactions with Xanthomonas oryzae pv. oryzae. Plant Cell Reports, 31, 895–904.

    Article  CAS  PubMed  Google Scholar 

  • Hua, C., Wang, Y., Zheng, X., Dou, D., Zhang, Z., Govers, F., & Wang, Y. (2008). A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. Eukaryotic Cell, 7, 2133–2140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. T., Cho, K. S., Jang, Y. S., & Kang, K. Y. (2001). Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis, 22, 2103–2109.

    Article  CAS  PubMed  Google Scholar 

  • Koeck, M., Hardham, A. R., & Dodds, P. N. (2011). The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cellular Microbiology, 13(12), 1849–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legay, G., Marouf, E., Berger, D., Neuhaus, J. M., Mauch-Mani, B., & Slaughter, A. (2011). Identification of genes expressed during the compatible interaction of grapevine with Plasmopara viticola through suppression subtractive hybridization (SSH). European Journal of Plant Pathology, 129(2), 281–301.

    Article  Google Scholar 

  • Li, A., Meng, C., Zhou, R., Ma, Z., & Jia, J. (2006). Assessment of lipid transfer protein (LTP1) Gene in wheat powdery mildew resistance. Agricultural Sciences in China, 5, 241–249.

    Article  CAS  Google Scholar 

  • Lu, S., Friesen, T. L., & Faris, J. D. (2011). Molecular characterization and genomic mapping of the pathogenesis-related protein 1 (PR-1) gene family in hexaploid wheat (Triticum aestivum L.). Molecular Genetics and Genomics, 285, 485–503.

    Article  CAS  PubMed  Google Scholar 

  • Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J., & Cameron, R. K. (2002). A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 419, 399–403.

    Article  CAS  PubMed  Google Scholar 

  • Manickavelu, A., Kawaura, K., Oishi, K., Shin-I, T., Kohara, Y., Yahiaoui, N., Keller, B., Suzuki, A., Yano, K., & Ogihara, Y. (2010). Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by Puccinia triticina. DNA Research, 17, 211–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maytalman, D., Mert, Z., Baykal, A. T., Inan, C., Günel, A., & Semra, H. (2013). Proteomic analysis of early responsive resistance proteins of wheat (Triticum aestivum) to yellow rust (Puccinia striiformis f. sp. tritici) using ProteomeLab PF2D. Plant Omi, 6, 24–35.

    CAS  Google Scholar 

  • McNeal, F. H., Konzak, C. F., Smith, E. P., Tate, W. S., & Russel, T. S. (1971). A uniform system for recording and processing cereal research data. Agric Res Serv Bull, 34-121.

  • Mellersh, D. G., Foulds, I. V., Higgins, V. J., & Heath, M. C. (2002). H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. The Plant Journal, 29, 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza, M. (2011). Oxidative burst in plant-pathogen interaction. Biotecnol Veg, 11, 67–75.

    Google Scholar 

  • Nanda, A. K., Andrio, E., Marino, D., Pauly, N., & Dunand, C. (2010). Reactive oxygen species during plant-microorganism early interactions. Journal of Integrative Plant Biology, 52, 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., & Jones, J. D. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 312, 436–439.

    Article  CAS  PubMed  Google Scholar 

  • Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5, 308–316.

    Article  CAS  PubMed  Google Scholar 

  • Rampitsch, C., Bykova, N. V., McCallum, B., Beimcik, E., & Ens, W. (2006). Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics, 6, 1897–1907.

    Article  CAS  PubMed  Google Scholar 

  • Rampitsch, C., Günel, A., Beimcik, E., & Mauthe, W. (2015). Proteome of monoclonal antibody-purified haustoria from Puccinia triticina race-1. Proteomics, 15(7), 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J. E., Rodermel, S., Inze, D., & Mittler, R. (2002). Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. The Plant Journal, 32, 329–342.

    Article  CAS  PubMed  Google Scholar 

  • Rovenich, H., Boshoven, J. C., & Thomma, B. P. (2014). Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Current Opinion in Plant Biology, 20, 96–103.

    Article  CAS  PubMed  Google Scholar 

  • Scholtz, J. J. (2013). Identification of a putative protease inhibitor involved in three different puccinia-triticum aestivum interactions (doctoral dissertation, University Of The Free State Bloemfontein South Africa).

  • Selitrennikoff, C. P. (2001). Antifungal proteins. Applied and Environmental Microbiology, 67(7), 2883–2894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiu, S.H., Bleecker, A.B., (2001). Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE, 113:re22.

  • Takakura, Y., CHE, F. S., Ishida, Y., Tsutsumi, F., KUROTANI, K. I., Usami, S., et al. (2008). Expression of a bacterial flagellin gene triggers plant immune responses and confers disease resistance in transgenic rice plants. Molecular Plant Pathology, 9(4), 525–529.

    Article  CAS  PubMed  Google Scholar 

  • Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H. S., Han, B., et al. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen pseudomonas syringae. Plant Cell, 15(2), 317–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenberge, K. B., Beckedorf, M., Hoppe, B., Schouten, A., Solf, M., & von den Driesch, M. (2002). In situ localization of AOS in host-pathogen interactions. Microscopy and Microanalysis, 8, 250–251.

    Google Scholar 

  • Tomich, M., Herfst, C. A., Golden, J. W., & Mohr, C. D. (2002). Role of flagella in host cell invasion by Burkholderia cepacia. Infection and Immunity, 70, 1799–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaghefi, N., Mustafa, B. M., Dulal, N., Selby-Pham, J., Taylor, P. W. J., & Ford, R. (2013). A novel pathogenesis-related protein (LcPR4a) from lentil, and its involvement in defence against Ascochyta lentis. Phytopathologia Mediterranea, 52, 192–201.

    CAS  Google Scholar 

  • van Loon, L. C., & Van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55, 85–97.

    Article  Google Scholar 

  • van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  • Vidhyasekaran, P. (2008). Perception and transduction of plant signals in pathogens. In P. Vidhyasekaran (Ed.), Fungal Pathogenesis in Plants and Crops: Molecular Biology and Host Defense Mechanisms (Second ed., ). Florida: CRC Press.

    Google Scholar 

  • Walker, J. C. (1994). Structure and function of the receptor-like protein kinases of higher plants. Plant Molecular Biology, 26, 1599–1609.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Liu, W., Chen, X., Tang, C., Dong, Y., Ma, J., Huang, X., Wei, G., Han, Q., Huang, L., & Kang, Z. (2010). Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biology, 10, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilm, M., Shevchenko, A., Houthaeve, T., Breit, S., Schweigerer, L., Fotsis, T., & Mann, M. (1996). Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature, 379, 466–469.

    Article  CAS  PubMed  Google Scholar 

  • Xin, M., Wang, X., Peng, H., Yao, Y., Xie, C., Han, Y., Ni, Z., & Sun, Q. (2012). Transcriptome comparison of susceptible and resistant wheat in response to powdery mildew infection. Genomics, Proteomics & Bioinformatics, 10, 94–106.

    Article  CAS  Google Scholar 

  • Yang, A. H., & Yeh, K. W. (2005). Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. kaosiung no. 1). Planta, 221, 493–501.

    Article  CAS  PubMed  Google Scholar 

  • Yao, R., Burr, D. H., Doig, P., Trust, T. J., Niu, H., & Guerry, P. (1994). Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Molecular Microbiology, 14, 883–893.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, H., Li, S., Deng, Z., Wang, X., Chen, T., Zhang, J., Chen, S., Ling, H., Zhang, A., Wang, D., & Zhang, X. (2007). Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. The Plant Journal, 52, 420–434.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by TUBITAK, COST programme 109 T293 project. We thank Kadir Akan, Ayşe Yıldız and Lütfi Çetin for their help during plant inoculation and sampling. We also thank Abdulmecit Gökçe and Yavuz Öztürk for their technical support for PF2D as well as Konca Bulut and Rahmi Büyükkeskin for their experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semra Hasançebi.

Electronic supplementary material

Fig. S1

Third dimension seperation of proteins by 12 % 1D-PAGE (JPEG 131 kb)

ESM 1

(XLSX 1989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirci, Y.E., Inan, C., Günel, A. et al. Proteome profiling of the compatible interaction between wheat and stripe rust. Eur J Plant Pathol 145, 941–962 (2016). https://doi.org/10.1007/s10658-016-0882-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0882-1

Keywords

Navigation