Skip to main content
Log in

Penetration and translocation of Erwinia amylovora-specific bacteriophages in apple - a possibility of enhanced control of fire blight

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

We have investigated the uptake and delivery of Erwinia amylovora-specific bacteriophages in apple plants. The main aim of this study was to assess the potential of phage application as a means for improving phage persistence and thereby the control of fire blight, the disease caused by E. amylovora. Both phage strains tested (ΦEa104 and H5K) were able to translocate in apple seedlings and were detectable by a modified Adams’ drop test and real-time qPCR in plant parts above ground level following their application to the roots. Conversely, phages were detectable in roots after spraying them onto the stem and leaves. A water suspension of phages effectively decreased symptom severity of E. amylovora infection in apple seedlings following treatment of roots or aerial plant parts and application to the cotyledon, as judged by symptom bonitation. A similar effect was achieved by spraying a phage suspension onto flowering firethorn shoots. Interestingly no significant differences in controlling E. amylovora infection were found among the two phage strains tested. It seems that phages specific to E. amylovora can penetrate plants and exhibit a decrease in severity of symptoms caused by the phytopathogen. Demonstrating in planta translocation of E. amylovora-specific bacteriophages and their effect of reducing fire blight symptoms may significantly contribute to a better control of E. amylovora and promote further investigations on penetration and translocation of phages into plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams, M. H. (1959). Bacteriophages (pp. 450–456). New York: Interscience.

    Google Scholar 

  • Assadian, N. W., Di Giovanni, G. D., Enciso, J., Iglesias, J., & Lindemann, W. (2005). The transport of waterborne solutes and bacteriophage in soil subirrigated with wastewater blend. Agriculture, Ecosystem and Environment, 111, 279–291.

    Article  Google Scholar 

  • Astier, S., Albouy, J., Maury, Y., Robaglia, C., & Lecoq, H. (2007). Principles of plant virology: Genome, pathogenicity, virus ecology. Enfield: Science Publishers.

    Google Scholar 

  • Balogh, B., Jones, J. B., Momol, M. T., Olson, S. M., Obradovic, A., & Jackson, L. E. (2003). Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Disease, 87, 949–954.

    Article  Google Scholar 

  • Boulé, J., Sholberg, P. L., Lehman, S. M., O’Gorman, D. T., & Svircev, A. M. (2011). Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Canadian Journal of Plant Pathology, 33, 308–317.

    Article  Google Scholar 

  • Boyd, R. J., Hildebrandt, A. C., & Allen, O. N. (1971). Retardation of crown gall enlargement after bacteriophage treatment. Plant Disease Reporter, 55, 145–148.

    Google Scholar 

  • Dömötör, D., Becságh, P., Rákhely, G., Schneider, G., & Kovács, T. (2012). Complete genomic sequence of Erwinia amylovora Phage PhiEaH2. Journal of Virology, 86, 10899.

    Article  PubMed Central  PubMed  Google Scholar 

  • Falkenstein, H., Bellemann, P., Walter, S., Zeller, W., & Geider, K. (1988). Identification of Erwinia amylovora, the fireblight pathogen, by colony hybridization with DNA from plasmid pEa29. Applied and Environmental Microbiology, 54, 2798–2802.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiwara, A., Hamasaki, R., Kawasaki, T., Makoto Fujie, M., & Yamada, T. (2011). Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and Environmental Microbiology, 77, 4155–4162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gill, J., & Abedon, S. T. (2003). Bacteriophage ecology and plants. APSnet Features Online http://www.apsnet.org/publications/apsnetfeatures/Pages/BacteriophageEcology.aspx.

  • Helms, K., & Wardlaw, I. F. (1976). Movement of viruses in plants: Long distance movement of tobacco mosaic virus in Nicotiana glutinosa. In I. F. Wardlaw & J. B. Passioura (Eds.), Transport and transfer processes in plants (pp. 283–293). New York: Academic.

  • Iriarte, F. B., Balogh, B., Momol, M. T., Smith, L. M., Wilson, M., & Jones, J. B. (2007). Factors affecting survival of bacteriophage on tomato leaf surfaces. Applied and Environmental Microbiology, 73, 1704–1711.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iriarte, F. B., Obradovic, A., Wernsing, M. H., Jackson, L. E., Balogh, B., Hong, J. A., et al. (2012). Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages: two possible strategies for improving bacteriophage persistence for plant disease control. Bacteriophage, 2, 215–224.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones, J. B., Jackson, L. E., Balogh, B., Obradovich, A., Iriarte, F. B., & Momol, M. T. (2007). Bacteriophages for plant disease control. Annual Review of Phytopathology, 45, 245–262.

    Article  CAS  PubMed  Google Scholar 

  • Kolozsvári, N. J., Király, L., & Schwarczinger, I. (2012). Phage therapy for plant disease control with a focus on fire blight. Central European Journal of Biology, 7, 1–12.

    Google Scholar 

  • Kovács, T., Gáll, J., Kovács, Á. L., Schneider, Gy., & Rákhely, G. (2012). Development and application of phage therapy based pesticides: practical experiences. The Hungarian Society for Microbiology’s Congress of the year 2012, 24–26 October 2012, Keszthely, Hungary.

  • Kovács, T., Várnai, N. Á., Dömötör, D., Rákhely, G., Schneider, Gy. (2013). Phage therapy base pesticides: practical experiences. 2nd Biotechnology World Congress, 18–21 February, 2013, Dubai, UAE.

  • Lehman, S. M. (2007). Development of a bacteriophage-based biopesticide for fire blight. PhD thesis. Ontario: Brock University.

  • Mazur, B., & Paciorkiewicz, W. (1973). Dissemination of enteroviruses in the human environment I. Presence of poliovirus in various parts of vegetable plants grown on infected soil. Medycyna Doświadczalna i Mikrobiologia, 25, 93–98.

    CAS  PubMed  Google Scholar 

  • Meczker, K., Dömötör, D., Vass, J., Rákhely, G., Schneider, G., & Kovács, T. (2014). The genome of the Erwinia amylovora phage PhiEaH1 reveals greater diversity and broadens the applicability of phages for the treatment of fire blight. FEMS Microbiology Letters, 350, 25–27.

    Article  CAS  PubMed  Google Scholar 

  • Müller, I., Lurz, R., Kube, M., Quedenau, C., Jelkmann, W., & Geider, K. (2011). Molecular and physiological properties of bacteriophages from North America and Germany affecting the fire blight pathogen Erwinia amylovora. Microbial Biotechnology, 4, 735–745.

    Article  PubMed Central  PubMed  Google Scholar 

  • Murphy, W. H., & Syverton, J. T. (1958). Absorption and translocation of mammalian viruses by plants. II. Recovery and distribution of viruses in plants. Virology, 6, 623.

    Article  PubMed  Google Scholar 

  • Obradovic, A., Jones, J. B., Momol, M. T., Olson, S. M., Jackson, L. E., Balogh, B., et al. (2005). Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Disease, 89, 712–716.

    Article  CAS  Google Scholar 

  • Oron, G. (1996). Soil as a complementary treatment component for simultaneous wastewater disposal and reuse. Water Science and Technology, 34, 243–252.

    Article  CAS  Google Scholar 

  • Oron, G., Goemans, M., Manor, Y., & Feyen, J. (1995). Poliovirus distribution in the soil-plant system under reuse of secondary wastewater. Water Research, 29, 1069–1078.

    Article  CAS  Google Scholar 

  • Rao, Y. P., & Srivastava, D. N. (1973). Application of phages in investigation of epidemiology of bacterial blight disease of rice. In S. P. Raychandhari (Ed.), Proceedings of the Indian National Science Academy: Epidemiology, forecasting and control of plant diseases, 37, (pp. 314–321).

  • Schnabel, E. L., & Jones, A. L. (2001). Isolation and characterization of five Erwinia amylovora bacteriophages and assessment of phage resistance in strains of Erwinia amylovora. Applied and Environmental Microbiology, 67, 59–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schnabel, E. L., Fernando, W. G. D., Meyer, M. P., Jones, A. L., & Jackson, L. E. (1999). Bacteriophage of Erwinia amylovora and their potential for biocontrol. Acta Horticulturae, 489, 649–654.

    Google Scholar 

  • Schwarczinger, I., Kiss, E., Hevesi, M., Tóth, M., & Süle, S. (2011). Control of fire blight by bacteriophages on apple flowers. Acta Horticulturae, 896, 457–459.

    Google Scholar 

  • Svircev, A. M., Lehman, S. M., Kim, W. S., Barszcz, E., Schneider, K. E., & Castle, A. J. (2006). Control of the fire blight pathogen with bacteriophages. In W. Zeller & C. Ullrich (Eds.), Proceedings of the 1st International Symposium on Biological Control of Bacterial Plant Diseases (pp. 259–261). Berlin: Arno Brynda.

    Google Scholar 

  • Sykes, I. K., Lanning, S., & Williams, S. T. (1981). The effect of pH on soil actinophage. Journal of General Microbiology, 122, 271–280.

    Google Scholar 

  • Tanaka, H., Negishi, H., & Maeda, H. (1990). Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearunm M4S and its bacteriophage. Annals of the Phytopathologicial Society of Japan, 56, 243–246.

    Article  Google Scholar 

  • Taylor, A. L. (1963). Bacteriophage-induced mutation in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 50, 1043–1051.

  • Ward, R. L., & Mahler, R. J. (1982). Uptake of bacteriophage f2 through plant roots. Applied and Environmental Microbiology, 43, 1098–1103.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor K. Geider (Julius Kühn Institute, Dossenheim, Germany), for providing us bacterium and phage strains (Ea1/79Sm and ΦEa104). This research was supported by the Hungarian Scientific Research Fund (OTKA PD 75280, K 104730) and the Bolyai Scholarship (BO 609 12).

Conflict of interest

No conflict of interest is declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildikó Schwarczinger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 463 kb)

ESM 2

(PDF 83 kb)

ESM 3

(PDF 885 kb)

ESM 4

(PDF 4562 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolozsváriné Nagy, J., Schwarczinger, I., Künstler, A. et al. Penetration and translocation of Erwinia amylovora-specific bacteriophages in apple - a possibility of enhanced control of fire blight. Eur J Plant Pathol 142, 815–827 (2015). https://doi.org/10.1007/s10658-015-0654-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0654-3

Keywords

Navigation