Skip to main content
Log in

Control of citrus pathogens by protein extracts from Solanum tuberosum tubers

  • Original Research
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A national program for citrus certification was started in Argentina in 2005 in order to provide healthy fruits free of toxic residues. In line with this goal, the aim of this study was to evaluate the efficacy of natural products, protein extracts obtained from potato tubers for the control of fungi responsible for disease in post-harvest citrus fruits. Different protein fractions were obtained from Solanum tuberosum tubers (IF25, IF50, SF25 and SF50) and their effect were evaluated on Penicillium digitatum and Geotrichum candidum, two citrus-pathogenic fungi. All fractions showed antifungal activity against both fungi species, the intensity of this activity being dependent on the type of fungus and extract. The fraction IF25 was the most active as an antifungal agent: it inhibited the mycelia growth of both pathogens, the elongation of the germ tube of P. digitatum and the conidial isotropic growth of G. candidum as well as its polygalacturonase activity. None of the IF25 concentrations were mutagenic in Salmonella typhimurium TA98 or TA100 strains. The efficacy of protein extracts to control P. digitatum and G. candidum growth was tested in artificially inoculated citrus fruits. Extracts were tested built-in to the wax used in citrus industry to coat and protect the fruit. The IF25 extract was effective in inhibiting the growth and development of P.digitatum and G. candidum. Consequently, the IF25 extract plus the wax could be used preventively in controlling fungal infection on post-harvest citrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrews, D. L., Beames, B., Summers, M. D., & Park, W. D. (1988). Characterization of the lipid acyl hydrolase activity of the major potato (Solanum tuberosum) tuber protein, patatin, by cloning and abundant expression in a baculovirus vector. Biochemistry Journal, 252, 199–206.

    CAS  Google Scholar 

  • Asociación Tucumana de Citrus (2013). Problemas y enfermedades del limón y los citrus. Artículo 4. www.atcitrus.com.

  • Balestra, G. M., Heydari, A. D., Ceccarelli, E., Ovidi, A., & Quatrucci, A. (2009). Antibacterial effect of Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop Protection, 28, 807–811.

    Article  Google Scholar 

  • Barkai-Golan, R. (2001). Postharvest diseases of fruits and vegetables. development and control. Amsterdam: Elsevier Science.

    Google Scholar 

  • Bártová, V., & Bárta, J. (2009). Chemical composition and nutritional value of protein concentrates isolated from potato (Solanum tuberosum L.) fruit juice by precipitation with ethanol or ferric chloride. Journal of Agricultural and Food Chemistry, 57, 9028–9034.

    Article  PubMed  Google Scholar 

  • Berrocal-Lobo, M., Segura, A., Moreno, M., López, G., García- Olmedo, F., & Molina, A. (2002). Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiology, 128, 951–961.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analitical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Brent, K. J. & Hollomon, D. W. (2007). Fungicide resistance: The assessment of risk FRAC Monograph N° 2, second revised edition, FRAC, 52pp.

  • Deberdt, P., Perrin, B., & Coranson-Beaudu, R. (2012). Effect of Allium fistulosum Extract on Ralstonia solanacearum populations and tomato bacterial wilt. Plant Disease, 96, 687–692.

    Article  Google Scholar 

  • Droby, S., Chalutz, E., & Wilson, C. L. (1991). Antagonistic microorganisms as biological control agents of postharvest diseases of fruits and vegetables. In A. J. Rendell-Dunn (Ed.), Postharvest News and Information (pp. 169–173). Oxon: CAB International.

    Google Scholar 

  • Eckert, J. W., & Wild, B. L. (1983). Problems of fungicide resistance in Penicillium root of citrus fruits. In G. P. Georghiou & T. Saito (Eds.), Pest Resistance to Pesticides (pp. 525–556). New York: Plenum.

    Chapter  Google Scholar 

  • Eckert, J. W., & Eaks, I. L. (1989). Postharvest disorders and diseases of citrus fruits. In W. Reuter, E. C. Calavan, & G. E. Carman (Eds.), The Citrus Industry (Vol. 5, pp. 179–260). Berkeley: Univ. California Press.

    Google Scholar 

  • Esteves-Souza, A., Sarmento da Silva, T., Fernandes Alves, C., de Carvalho, M., Braz-Filhob, R., & Echevarria, A. (2002). Cytotoxic activities against ehrlich carcinoma and human K562 leukaemia of alkaloids and flavonoid from two Solanum Species. Journal of the Brazilian Chemistry Society, 13, 838–842.

    Article  CAS  Google Scholar 

  • Fandos, C., Scandaliaris, P., Carreras Baldrés, J. & Soria, F. (2012). Reporte Agroindustrial: Estadísticas y márgenes de cultivos tucumanos. EEAOC N° 70. ISSN 1851–5789.

  • Federcitrus (Federacion Argentina del citrus) (2005). La actividad citrícola argentina, Argentine Citrus Industry. pp. 1–12.

  • Gatto, M. A., Ippolito, A., Linsalata, V., Cascarano, N. A., Nigro, F., Vanadia, S., & Di Venere, D. (2011). Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biology and Technology, 61, 72–82.

    Article  Google Scholar 

  • Kim, Y. C., Che, Q., Leslie Gunatilaka, A., & Kingston, D. (1996). Bioactive Steroidal Alkaloids from Solanum umbelliferum. Journal of Natural Product, 59, 283–285.

    Article  CAS  Google Scholar 

  • Kusano, G., Takahashi, A., Sugiyama, K., & Nozol, S. (1987). Antifungal properties of Solanum alkaloids. Chemical and Pharmaceutical Bulletin, 35, 4862–4867.

    Article  CAS  PubMed  Google Scholar 

  • Isla, M. I., Vattuone, M. A., & Sampietro, A. R. (1991). Proteinaceous inhibitor from Solanum tuberosum invertase. Phytochemistry, 30, 739–743.

    Article  CAS  Google Scholar 

  • Isla, M. I., Leal, D. P., Vattuone, M. A., & Sampietro, A. R. (1992). Cellular localization of the invertase proteinaceous inhibitor and lectin from potato tubers. Phytochemistry, 31, 1115–1118.

    Article  CAS  Google Scholar 

  • Isla, M. I., Vattuone, M. A., Ordóñez, R. M., & Sampietro, A. R. (1999). Invertase activity associated with the walls of Solanum tuberosum tubers. Phytochemistry, 50, 525–534.

    Article  CAS  PubMed  Google Scholar 

  • Isla, M. I., Ordoñez, R. M., Nieva Moreno, M. I., Sampietro, A. R., & Vattuone, M. A. (2002). Inhibition of hydrolytic enzyme activities and plant pathogen growth by invertase inhibitors. Journal of Enzyme Inhibition, 17, 37–43.

    Article  CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Maron, D. M., & Ames, B. N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research, 113, 173–215.

    Article  CAS  PubMed  Google Scholar 

  • Mendes Andrade, P. J., Souza, E. A., & Ferreira Oliveira, D. (2010). Use of plant extracts in the control of common bean anthracnose. Crop Protection, 29, 838–842.

    Article  Google Scholar 

  • Narayanasamy, P. (2006). Postharvest pathogens and disease management. Hoboken: Wiley.

    Google Scholar 

  • Nelson, N. A. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153, 375–380.

    CAS  Google Scholar 

  • Norman, C. (1988). Environmental Protection Agency (EPA) sets new policy on pesticide cancer risks. Science, 242, 366–367.

    Article  CAS  PubMed  Google Scholar 

  • Ordoñez, R. M., Zampini, I. C., Rodríguez, F., Cattaneo, F., Sayago, J. E., & Isla, M. I. (2011). Radical scavenging capacity and antimutagenic properties of purified proteins from Solanum betaceum fruits and Solanum tuberosum tubers. Journal of Agricultural and Food Chemistry, 59, 8655–8660.

    Article  PubMed  Google Scholar 

  • Ordoñez, R. M., Sayago, J. E., Zampini, I. C., Rodriguez, F., Cattaneo, F., & Isla, M. I. (2012). Bioactive proteins from edible plants of Solanum genus. Current Topics in peptide & protein research, Minireview, 12, 75–79.

    Google Scholar 

  • Rowan, D. D., MacDonald, P. E., & Skipp, R. A. (1983). Antifungal stress metabolites from Solanum aviculare. Phytochemistry, 22, 2102–2104.

    Article  CAS  Google Scholar 

  • Sayago, J. E., Ordóñez, R. M., Negrillo Kovacevich, L., Torres, S., & Isla, M. I. (2012). Antifungal activity of extracts of extremophile plants from the Argentine Puna to control citrus postharvest pathogens and green mold. Postharvest Biology and Technology, 67, 19–24.

    Article  Google Scholar 

  • Schirra, M., D’Aquino, S., Cabras, P., & Angioni, A. (2011). Control of postharvest diseases of fruit by heat and fungicides: efficacy, residue levels, and residue persistence. A review. Journal of Agricultural and Food Chemistry, 59, 8531–8542.

    Article  CAS  PubMed  Google Scholar 

  • Segura, A., Moreno, M., Madueño, F., Molina, A., & García-Olmedo, F. (1999). Snakin-1, a peptide from potato that is active against plant pathogens. Molecular Plant- Microbe Interaction, 12, 16–23.

    Article  CAS  Google Scholar 

  • Somogyi, M. (1945). A new reagent for the determination of sugars. Journal Biological Chemistry, 160, 61–68.

    CAS  Google Scholar 

  • Sukorini, H., Sangchote, S., & Khewkhom, N. (2013). Control of postharvest green mold of citrus fruit with yeasts, medicinal plants, and their combination. Postharvest Biology and Technology, 79, 24–31.

    Article  Google Scholar 

  • Torres, S., Sayago, J., Ordoñez, R. M., & Isla, M. I. (2011). A colorimetric method to quantify endo-polygalacturonase activity. Enzyme Microbiology and Technology, 48, 123–128.

    Article  CAS  Google Scholar 

  • Uppal, A. K., Hadrami, A. E., Adam, L. R., Tenuta, M., & Daayf, F. (2008). Biological control of potato Verticillium wilt under controlled and field conditions using selected bacterial antagonists and plant extracts. Biological Control, 44, 90–100.

    Article  Google Scholar 

  • Whiteside, J. O., Garnsey, S. M., & Timmer, L. W. (1993). Compendium of citrus diseases. St. Paul: APS Press. 80 pp.

    Google Scholar 

  • Wisniewski, M. E., & Wilson, C. L. (1992). Biological control of postharvest diseases of fruits and vegetables: recent advances. HortScience, 27, 94–98.

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by grants from Consejo de Investigación de la Universidad Nacional de Tucumán (26 D-430, CIUNT, Tucumán, Argentina), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP-704, CONICET; Buenos Aires, Argentina) and Agencia Nacional de Promoción Científica y Tecnológica (Prestamo BID PICT 1959).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Ordóñez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, I.F., Sayago, J.E., Torres, S. et al. Control of citrus pathogens by protein extracts from Solanum tuberosum tubers. Eur J Plant Pathol 141, 585–595 (2015). https://doi.org/10.1007/s10658-014-0566-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0566-7

Keywords

Navigation