Skip to main content
Log in

Virus-induced gene silencing of pectin methylesterase protects Nicotiana benthamiana from lethal symptoms caused by Tobacco mosaic virus

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Plant viruses are obligate parasites that exploit host components for replication and spread inside the host. Transport of the viral genome is enabled by movement proteins (MPs) targeting the cell periphery to mediate passage throughout plasmodesmata (PD). Pectin methylesterase (PME) is one of the critical host factors facilitating MPs in PD gating, and a direct interaction of PME with Tobacco mosaic virus (TMV) MP is required for viral movement and in turn for virus viability. PME is a critical enzyme for host development and defence, acting via complex mechanisms involving multigenic and tissue specific isoforms and endogenous inhibitors. This composite activity of PME suggests that level and timing of protein accumulation, with respect to virus inoculation and MP expression, can be critical for the functional outcome of the PME-MP interaction and in turn for the success of a viral infection. Based on this notion, we tested different experimental conditions to evaluate the beneficial effect of the downregulation of PME gene expression on the development of TMV-induced disease and on plant protection. We used virus induced gene silencing technology (VIGS) to downregulate PME gene expression, which resulted in a 30–45 % reduction of TMV symptom severity and, correspondingly, to a 60 % reduction of TMV RNA accumulation in systemic leaves. VIGS proved to be a rapid and effective technology for PME gene silencing in functional assays and for plant defence from viral infection. Our findings indicate that N. benthamiana plants with hindered expression of PME survive a TMV infection, which kills non-silenced plants within a week.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andika, I. B., Zheng, S., Tan, Z., Sun, L., Kondo, H., Zhou, X., et al. (2013). Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Virology, 435(2), 493–503.

    Article  CAS  PubMed  Google Scholar 

  • Ascencio-Ibanez, J. T., Sozzani, R., Lee, T. J., Chu, T. M., Wolfinger, R. D., Cella, R., et al. (2008). Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiology, 148(1), 436–454.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, M. H., & Citovsky, V. (2003). Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant Journal, 35(3), 386–392.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M. H., Sheng, J., Hind, G., Handa, A. K., & Citovsky, V. (2000). Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. The EMBO Journal, 19(5), 913–920.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cillo, F., Mascia, T., Pasciuto, M. M., & Gallitelli, D. (2009). Differential effects of mild and severe Cucumber mosaic virus strains in the perturbation of MicroRNA-regulated gene expression in tomato map to the 3’ sequence of RNA 2. Molecular Plant-Microbe Interactions, 22(10), 1239–1249.

    Article  CAS  PubMed  Google Scholar 

  • Di Matteo, A., Giovane, A., Raiola, A., Camardella, L., Bonivento, D., De Lorenzo, G., et al. (2005). Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell, 17(3), 849–858.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dorokhov, Y. L., Frolova, O. Y., Skurat, E. V., Ivanov, P. A., Gasanova, T. V., Sheveleva, A. A., et al. (2006). A novel function for a ubiquitous plant enzyme pectin methylesterase: the enhancer of RNA silencing. FEBS Letters, 580(16), 3872–3878.

    Article  CAS  PubMed  Google Scholar 

  • Dorokhov, Y. L., Komarova, T. V., Petrunia, I. V., Frolova, O. Y., Pozdyshev, D. V., & Gleba, Y. Y. (2012). Airborne signals from a wounded leaf facilitate viral spreading and induce antibacterial resistance in neighboring plants. PLoS Pathogens, 8(4), e1002640.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giovane, A., Servillo, L., Balestrieri, C., Raiola, A., D’Avino, R., Tamburrini, M., et al. (2004). Pectin methylesterase inhibitor. Biochimica et Biophysica Acta, 1696(2), 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  CAS  PubMed  Google Scholar 

  • Holsters, M., de Waele, D., Depicker, A., Messens, E., van Montagu, M., & Schell, J. (1978). Transfection and transformation of Agrobacterium tumefaciens. Molecular and General Genetics, 163(2), 181–187.

    Article  CAS  PubMed  Google Scholar 

  • Jolie, R. P., Duvetter, T., Van Loey, A. M., & Hendrickx, M. E. (2010). Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydrate Research, 345(18), 2583–2595.

    Article  CAS  PubMed  Google Scholar 

  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. [Research Support, Non-U.S. Gov’t]. Bioinformatics, 23(21), 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Lionetti, V., Cervone, F., & Bellincampi, D. (2012). Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases. Journal of Plant Physiology, 169(16), 1623–1630.

    Article  CAS  PubMed  Google Scholar 

  • Lionetti, V., Raiola, A., Cervone, F., & Bellincampi, D. (2014). Transgenic expression of pectin methylesterase inhibitors limits tobamovirus spread in tobacco and Arabidopsis. Molecular Plant Pathology, 15(3), 265–74.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Schiff, M., & Dinesh-Kumar, S. P. (2002). Virus-induced gene silencing in tomato. The Plant Journal, 31(6), 777–786.

    Article  CAS  PubMed  Google Scholar 

  • Liu, D., Shi, L., Han, C., Yu, J., Li, D., & Zhang, Y. (2012). Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One, 7(9), e46451.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu, R., Martin-Hernandez, A. M., Peart, J. R., Malcuit, I., & Baulcombe, D. C. (2003). Virus-induced gene silencing in plants. Methods, 30(4), 296–303.

    Article  CAS  PubMed  Google Scholar 

  • Lucas, W. J. (2006). Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology, 344(1), 169–184.

    Article  CAS  PubMed  Google Scholar 

  • Marathe, R., Guan, Z., Anandalakshmi, R., Zhao, H., & Dinesh-Kumar, S. P. (2004). Study of Arabidopsis thaliana resistome in response to cucumber mosaic virus infection using whole genome microarray. Plant Molecular Biology, 55(4), 501–520.

    Article  CAS  PubMed  Google Scholar 

  • Micheli, F. (2001). Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends in Plant Science, 6(9), 414–419.

    Article  CAS  PubMed  Google Scholar 

  • Pelloux, J., Rusterucci, C., & Mellerowicz, E. J. (2007). New insights into pectin methylesterase structure and function. Trends in Plant Science, 12(6), 267–277.

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan, R., Voesenek, L. A. C. J., & Pierik, R. (2011). Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Critical Reviews in Plant Sciences, 30(6), 548–562.

    Article  CAS  Google Scholar 

  • Vorwerk, S., Somerville, S., & Somerville, C. (2004). The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science, 9(4), 203–209.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, S., & Greiner, S. (2012). Growth control by cell wall pectins. Protoplasma, 249(2), S169–175.

    Article  PubMed  Google Scholar 

  • Yang, C., Guo, R., Jie, F., Nettleton, D., Peng, J., Carr, T., et al. (2007). Spatial analysis of Arabidopsis thaliana gene expression in response to turnip mosaic virus infection. Molecular Plant-Microbe Interactions, 20(4), 358–370.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Savithramma P. Dinesh-Kumar for the pTRV1, pTRV2 and pTRV2: PDS vectors, Giusy D’attoma and Roberto Manzari for technical assistance and Peter Palukaitis for critical reading of the manuscript. This work was supported with a grant from the Ministry of Economy and Finance to the CNR, “Integrate knowledge for Sustainability and Innovation of Made in Italy Agro-Food (CISIA, l. 191/2009), and a grant to the Public-Private Laboratory GenoPom “Integrating post-genomic platforms to enhance the tomato production chain” (GenoPOMpro, Cod. PON02_00395_3082360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livia Stavolone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bubici, G., Carluccio, A.V., Cillo, F. et al. Virus-induced gene silencing of pectin methylesterase protects Nicotiana benthamiana from lethal symptoms caused by Tobacco mosaic virus . Eur J Plant Pathol 141, 339–347 (2015). https://doi.org/10.1007/s10658-014-0546-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0546-y

Keywords

Navigation