Skip to main content
Log in

PacCl, a pH-responsive transcriptional regulator, is essential in the pathogenicity of Colletotrichum lindemuthianum, a causal agent of anthracnose in bean plants

  • Original Research
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In fungi, the expression of genes encoding proteins related to parasitism is regulated by several factors, including pH. This study reports the structural and functional characterization of the pacCl gene, which encodes the transcription factor PacC of C. lindemuthianum. The pacCl gene showed reduced expression in acidic pH, and its transcription was activated by elevated extracellular pH. The importance of this gene was demonstrated by the development of a pacC1 disruption mutant line of C. lindemuthianum. The mutant line was able to penetrate the host tissue through differentiation of primary hyphae. However, it was not able to cause maceration on the infected plant tissue. The results suggest that PacCl is a regulator of gene activation, and its expression is required for fungal growth in alkaline conditions, as well as for the transcription of genes necessary for the passage from the biotrophic to the necrotrophic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akimitsu, K., Isshiki, A., Ohtani, K., Yamamoto, H., Eshel, D., & Prusky, D. (2004). Sugars and pH: a clue to the regulation of fungal cell wall-degrading enzymes in plants. Physiological and Molecular Plant Pathology, 65, 271–275.

    Article  CAS  Google Scholar 

  • Ansari, K. I., Palacios, N., Araya, C., Langin, T., Egan, D., & Doohan, F. M. (2004). Pathogenic and genetic variability among Colletotrichum lindemuthianum isolates of different geographic origins. Plant Pathology, 53, 635–642.

    Article  CAS  Google Scholar 

  • Aréchiga-Carvajal, A. T., & Ruiz-Herrera, J. (2005). The RIM101/pacC homologue from basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena. Eukaryotic Cell, 4, 999–1008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arst, H. N., Jr., & Peñalva, M. A. (2003). Recognizing gene regulation by ambient pH. Fungal Genetics and Biology, 40, 1–3.

    Article  PubMed  Google Scholar 

  • Bailey, J. A., & Jeger, M. J. (1992). Colletotrichum: Biology, pathology and control. Wallingford, Oxon: CAB International.

    Google Scholar 

  • Ballance, D. J. (1986). Important sequences for gene expression in filamentous fungi. Yeast, 2, 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Barcellos, Q. L., Souza, E. A., & Damasceno e Silva, K. J. (2011). Vegetative compatibility and genetic analysis of Colletotrichum lindemuthianum isolates from Brazil. Genetics and Molecular Research, 10, 230–242.

    Article  Google Scholar 

  • Benton, W. D., & Davis, R. W. (1977). Screening of Xgt recombinant clones by hybridization to single plaques in situ. Science, 196, 180–183.

    Article  PubMed  CAS  Google Scholar 

  • Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., & Wei, Y. (2013). Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryotic Cell, 12, 2–11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bignell, E., Negrete-Urtasun, S., Calcagno, A. M., Haynes, K., Arst, H. N., Jr., & Rogers, T. (2005). The Aspergillus pH-responsive transcription factor PacC regulates virulence. Molecular Microbiology, 55, 1072–1084.

    Article  PubMed  CAS  Google Scholar 

  • Blanchin-Roland, S., Cordero-Otero, R., & Gaillardin, C. (1994). Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica. Molecular Cell. Biology, 14, 327–338.

    CAS  Google Scholar 

  • Bonett, L. P., Schewe, I., & Silva, L. I. (2008). Variability of Colletotrichum lindemuthianum in common bean in western Paraná. Scientia Agrária, 9, 207–210.

    Google Scholar 

  • Brown, A. J. P., & Gow, N. A. R. (1999). Regulatory networks controlling Candida albicans morphogenesis. Trends in Microbiology, 7, 333–338.

    Article  PubMed  CAS  Google Scholar 

  • Caddick, M. X., Brownlee, A. G., & Arst, H. N. (1986). Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Molecular and General Genetics, 203, 346–353.

    Article  PubMed  CAS  Google Scholar 

  • Caracuel, Z., Roncero, M. I. G., Espeso, E. A., González-Verdejo, C. I., García-Maceira, F. I., & Pietro, A. (2003a). The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Molecular Microbiology, 48, 765–779.

    Article  PubMed  CAS  Google Scholar 

  • Caracuel, Z., Casanova, C., Roncero, M. I. G., Di Pietro, A., & Ramos, J. (2003b). pH response transcription factor PacC controls salt stress tolerance and expression of the P-type Na+-ATPase Ena1 in Fusarium oxysporum. Eukaryotic Cell, 2, 1246–1252.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Casela, C. R., & Frederiksen, R. A. (1994). Pathogenic variation in monoconidial culture from a single lesion and monoconodial subcultures of the sorghum anthracnose fungus Colletotrichum graminicola. Tropica Plant Pathology, 19, 149–153.

    Google Scholar 

  • Castro-Prado, M. A., Querol, C. B., Sant’Anna, J. R., Miyamoto, C. T., Franco, C. C., Mangolin, C. A., & Machado, M. F. (2007). Vegetative compatibility and parasexual segregation in Colletotrichum lindemuthianum, a fungal pathogen of the common bean. Genetics and Molecular Research, 6, 634–642.

    PubMed  CAS  Google Scholar 

  • Damasceno e Silva, K. J., Souza, E. A., & Ishikawa, F. H. (2007). Characterization of Colletotrichum lindemuthianum isolates from the State of Minas Gerais, Brasil. Journal of Phytopathology, 155, 241–247.

    Article  CAS  Google Scholar 

  • Davis, D., Edwards, J. E., Jr., Mitchell, A. P., & Ibrahim, A. S. (2000). Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infection and Immunity, 68, 5953–5959.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Bernardis, F., Muhlschlegel, F. A., Cassone, A., & Fonzi, W. A. (1998). The pH of the host niche controls gene expression in and virulence of Candida albicans. Infection and Immunity, 66, 3317–3325.

    PubMed  PubMed Central  Google Scholar 

  • Denison, S. H. (2000). Review: pH regulation of gene expression in fungi. Fungal Genetics and Biology, 29, 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Divon, H. H., & Fluhr, R. (2007). Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiology Letters, 266, 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Dufresne, M., Bailey, J. A., Michel, D., & Langin, T. (1998). clk1, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean. Molecular Plant-Microbe Interaction, 11, 99–108.

    Article  CAS  Google Scholar 

  • Dufresne, M., Perfect, S., Pellier, A. L., Bailey, J. A., & Langin, T. (2000). GAL4-like Protein is involved in the switch between biotrophic and necrotrophic phases of the infection process of Colletotrichum lindemuthianum on common bean. Plant Cell, 12, 1579–1589.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Elva, T., Aréchiga-Carvajal, Ruiz-Herrera, J. (2005). The HIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena. Eukariot. Cell. 4, 999–1008.

  • Felle, H. H., Herrmann, A., Hanstein, S., Hückelhoven, R., & Kogel, K.-H. (2004). Apoplastic pH signaling in barley leaves attackedby the powdery mildew fungus Blumeria graminis f. sp. hordei. Molecular Plant-Microbe Interactions, 17, 118–123.

    Article  PubMed  CAS  Google Scholar 

  • Flaherty, J. E., Pirttilä, A. M., Bluhm, B. H., & Woloshuk, C. P. (2003). PAC1, a pH-regulatory gene from Fusarium verticillioides. Applied Environmental Microbiology, 69, 5222–5227.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Franco, C. C., Sant’Anna, J. R., Rosada, L. J., Kaneshima, E. N., Stangarlin, J. R., & Castro-Prado, M. A. (2011). Vegetative compatibility groups and parasexual segregation in Colletotrichum acutatum isolates infecting different hosts. Phytopathology, 101, 923–928.

    Article  Google Scholar 

  • Gurr, S. J., Unkles, S. E., & Kinghorn, J. R. (1987). The structure and organization of nuclear genes of filamentous fungi. In J. R. Kinghorn (Ed.), Gene structure in eukaryotic microbes (pp. 93–139). Oxford: IRL Press.

    Google Scholar 

  • Horton, P., Park, K., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Research, 35, 585–587.

    Article  Google Scholar 

  • Inoue, H., Nojima, H., & Okayama, H. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23–28.

    Article  PubMed  CAS  Google Scholar 

  • King, B.R., Guda, C. (2007). ngLOC: an n-gram-based Bayesian method for estimating the subcellular proteomes of eukaryotes. Genome Biol. 8, R68.

  • Kozak, M. (1984). Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Research, 12, 857–872.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kramer-Haimovich, H., Servi, E., Katan, T., Rollins, J., Okon, Y., & Prusky, D. (2006). Effect of ammonia production by Colletotrichum gloesporioides on pelB activation, pectate lyase secretion and fruit pathogenicity. Applied and Environmental Microbiology, 72, 1034–1039.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lamb, T. M., Xu, W., Diamond, A., & Mitchel, A. P. (2001). Alkaline response genes of Saccharomyces cereviseae and their relationship to the RIM101 pathway. Journal of Biological Chemistry, 276, 1850–1856.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, M., Blanchin-Roland, S., Le Louedec, F., Lepingle, A., & Gaillardin, C. (1997). Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog. Molecular Cell. Biology, 17, 3966–3976.

    CAS  Google Scholar 

  • Larionov, A., Krause, A., & Miller, W. (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinf., 6, 62.

    Article  Google Scholar 

  • MacCabe, A. P., Van den Hombergh, J. P. T. W., Visser, J., Tilburn, J., & Arst, H. N., Jr. (1996). Identification, cloning and analysis of the Aspergillus niger gene pacC, a wide domain regulatory gene responsive to ambient pH. Molecular and General Genetics, 250, 367–374.

    PubMed  CAS  Google Scholar 

  • Maccheroni, W., Jr., Araújo, W. L., & Azevedo, J. L. (2004). Ambient pH-regulated enzyme secretion in endophytic and pathogenic isolates of the fungal genus Colletotrichum. Scientific Agriculture, 61, 298–302.

    CAS  Google Scholar 

  • Mahuku, G. S., & Riascos, J. J. (2004). Virulence and molecular diversity within Colletotrichum lindemuthianum isolates from Andean and Mesoamerican bean varieties and regions. European Journal Plant Pathology, 110, 253–263.

    Article  CAS  Google Scholar 

  • Merhej, J., Richard-Forget, F., & Barreau, C. (2011). The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genetics and Biology, 48, 275–284.

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Mateos, M. A., Delgado-Jarana, J., Codón, A. C., & Benítez, T. (2007). pH and Pac1 control development and antifungal activity in Trichoderma harzianum. Fungal Genetics and Biology, 44, 1355–1367.

    Article  PubMed  CAS  Google Scholar 

  • Nigg, E. A. (1997). Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature, 386, 779–787.

    Article  PubMed  CAS  Google Scholar 

  • Ochman, H., Gerber, A. S., & Hartl, D. L. (1988). Genetic applications of an inverse polymerase chain reaction. Genetics, 120, 621–623.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Parisot, D., Dufresne, M., Veneault, C., Laugé, R., & Langin, T. (2002). cla1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum. Molecular Genetics and Genomics, 268, 139–151.

    Article  PubMed  CAS  Google Scholar 

  • Pellier, A. L., Laugé, R., Veneault-Fourrey, C., & Langin, T. (2003). CLNR1, the AREA/NIT2-like global nitrogen regulador of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle. Molecular Microbiology, 48, 639–355.

    Article  PubMed  CAS  Google Scholar 

  • Peñalva, M. A., & Arst, H. N., Jr. (2002). Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiology Molecular Biology R., 66, 426–446.

    Article  Google Scholar 

  • Peñalva, M. A., & Arst, H. N., Jr. (2004). Recent avances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annual Review of Microbiology, 58, 425–451.

    Article  PubMed  Google Scholar 

  • Peñalva, M. A., Tilburn, J., Bignell, E., & Arst, H. N., Jr. (2008). Ambient pH gene regulation in fungi: making connections. Trends in Microbiology, 16, 291–300.

    Article  PubMed  Google Scholar 

  • Perfect, S. E., Hughes, H. B., O’Connell, R. J., & Green, J. (1999). Colletotrichum: a model genus for studies on pathology and fungal-plant interaction. Fungal Genetics and Biology, 27, 186–198.

    Article  PubMed  CAS  Google Scholar 

  • Prusky, D., & Yakoby, N. (2003). Pathogenic fungi: leading or led by ambient pH? Molecular Plant Pathology, 4, 509–516.

    Article  PubMed  CAS  Google Scholar 

  • Ramon, A. M., Porta, A., & Fonzi, W. A. (1999). Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-Related transcription factor encoded by PRR2. Journal of Bacteriology, 181, 7524–7530.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roca, M. G., Davide, L. C., & Mendes-Costa, M. C. (2003). Conidial anastomosis tubes in Colletotrichum. Fungal Genetics and Biology, 40, 138–145.

    Article  PubMed  Google Scholar 

  • Rodriguez-Guera, R.M.T., Ramirez-Rueda, De La Vega, O.M., Simpson, J. (2003). Variation in genotype, pathotype and anastomosis groups of Colletotrichum lindemuthianum isolates from Mexico. Plant Pathol. 52, 228–235.

  • Rollins, J. A. (2003). The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Molecular Plant-Microbe Interactions, 16, 785–795.

    Article  PubMed  CAS  Google Scholar 

  • Rollins, J. A., & Dickman, M. (2001). pH signaling in Sclerotinia sclerotiorum: identification of a pacC/HIM101 homolog. Applied and Environmental Microbiology, 67, 75–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rosada, L. J., Franco, C. C., Sant’Anna, J. R., Kaneshima, E. N., Gonçalves-Vidigal, M. C., & Castro-Prado, M. A. (2010). Parasexuality in Race 65 Colletotrichum lindemuthianum Isolates. Journal of Eukaryotic Microbiology, 57, 383–384.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Santos, L. V., Queiroz, M. V., Ferreira, M. S., Soares, M. A., Barros, E. G., Araújo, E. F., & Langin, T. (2012). Development of new molecular markers for the Colletotrichum genus using RetroCl1 sequences. World J. Microb. Biot., 28, 1087–1095.

    Article  Google Scholar 

  • Specht, C. A., DiRusso, C. C., Novotny, C. P., & Ullrich, R. C. (1982). A method for extracting high-molecular-weight deoxyribonucleic acid from fungi. Analytical Biochemistry, 119, 158–163.

    Article  PubMed  CAS  Google Scholar 

  • Su, S. S., & Mitchell, A. P. (1993). Molecular characterization of the yeast meiotic regulatory gene RIM1. Nucleic Acids Research, 21, 3789–3797.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suárez, T., & Peñalva, M. A. (1996). Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Molecular Microbiology, 20, 529–540.

    Article  PubMed  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA6: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular and Biological Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  • Thon, M. R., Nuckles, E. M., Takach, J. E., & Vaillancourt, L. J. (2002). CPR1: a gene encoding a putative signal peptidase that functions in tathogenicity of Colletotrichum graminicola to maize. Molecular Plant-Microbe Interactions, 15, 120–128.

    Article  PubMed  CAS  Google Scholar 

  • Tilburn, J., Sarkar, S., Widdick, D. A., Espeso, E. A., Orejas, M., Mungroo, J., Peñalva, M. A., & Arst, H. N., Jr. (1995). The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO Journal, 14, 779–790.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Voigt, C. A., Schafer, W., & Salomon, S. (2005). A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant Journal, 42, 364–375.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., & Szaniszlo, P. J. (2009). Roles of the pH signaling transcription factor PacC in Wangiella (Exophiala) dermatitidis. Fungal Genetics and Biology, 46, 657–666.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • You, B., Choquer, M., & Chung, K. (2007). The Colletotrichum acutatum gene encoding a putative pH-responsive transcription regulator is a key virulence determinant during fungal pathogenesis on citrus. Molecular Plant-Microbe Interactions, 20, 1149–1160.

    Article  PubMed  CAS  Google Scholar 

  • Zou, C., Tu, H., Liu, X., Tao, N., & Zhang, K. (2010). PacC in the nematophagous fungus Clonostachys rosea controls virulence to nematodes. Environmental Microbiology, 12, 1868–1877.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Research Foundation of the State of Minas Gerais (FAPEMIG), the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES), and the National Council for Scientific and Technological Development (CNPq) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Vieira de Queiroz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material A1

pacCl inactivation analysis. (a) Determining the copy number of pacCl gene by DNA hybridization. (b) The pBKSpac::hph2 plasmid used in the transformation. The clear rectangle represents the pacCl cDNA fragment. The trans-primer (gray triangle) was inserted into the region between the annealing sequences of the oligonucleotides Opac1 and Opac2; it amplified a 1,079-bp fragment of the pBKSpac::hph2 and 1221-bp of the genomic DNA. (c) PCR results using the group of oligonucleotide pair Opac1/Opac2 or Ohph3/Ohph4 and DNA from lines Mutpac2, Tr1, Tr2, Tr3, and Tr4 of C. lindemuthianum; M: 100-bp marker. (d) Molecular characterization of the pacCl mutant by DNA hybridization using as a probe a 1.8-kb fragment of the pacCl gene and the empty pBluescriptSK+. (M) - Lambda bacteriophage DNA digested with Hind III; (Mut): mutant line Mutpac2; (WT): wild-type line. (JPEG 2059 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, M.A., Nogueira, G.B., Bazzolli, D.M.S. et al. PacCl, a pH-responsive transcriptional regulator, is essential in the pathogenicity of Colletotrichum lindemuthianum, a causal agent of anthracnose in bean plants. Eur J Plant Pathol 140, 769–785 (2014). https://doi.org/10.1007/s10658-014-0508-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0508-4

Keywords

Navigation