Skip to main content
Log in

Molecular characterization of Xanthomonas strains responsible for bacterial spot of tomato in Ethiopia

  • Original Research
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bacterial spot of tomato (BST) is a major constraint to tomato production in Ethiopia and many other countries leading to significant crop losses. In the present study, using pathogenicity tests, sensitivity to copper and streptomycin, and multilocus sequence analysis (MLSA), we identified a diverse group of Xanthomonas strains isolated from central Ethiopia. None of the strains were sensitive to copper or streptomycin. Multilocus sequence analysis was used to compare Ethiopian strains with representative Xanthomonas strains from a worldwide collection based on DNA sequences of six housekeeping genes (lacF, lepA, gyrB, fusA, gltA and gapA) and hrpB genes. Phylogenetic analysis of the concatenated sequences showed that X. gardneri, X. vesicatoria and X. perforans were associated with BST in Ethiopia, whereas Xanthomonas euvesicatoria was absent from the Ethiopian sample. There was no genetic diversity among the isolated strains belonging to X. gardneri and X. perforans. However, two X. vesicatoria haplotypes were identified indicating at least two different sources of introduction of X. vesicatoria to Ethiopia. All of the X. perforans strains were only pathogenic on tomato and were T3 strains with the exception of one identified as tomato race 4 (T4). The X. gardneri and X. vesicatoria strains were tomato race 2 (T2), but were variable in pepper race determinations indicating variation in effectors among strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida, N. F., Shuangchun, Y., Magdalen, L., David, J. S., David, J. S., Bradford, C., Haijie, L., Carlos, J. V., Andrew, W., Clive, E., Eric, K., Dan, M., Aurelie, A., Gregory, B. M., Jonathan, D. J., Alan, C., Joao, C. S., & Boris, A. V. (2009). Draft Genome Sequence of Pseudomonas syringae pv. tomato, T1 Reveals a Type III Effector Repertoire Significantly Divergent from That of Pseudomonas syringae pv. tomato DC3000. Molecular Plant Microbe Interactions, 22(1), 52–62.

    Article  PubMed  CAS  Google Scholar 

  • Almeida, N. F., Yan, S., Cai, R., Clarke, C. R., Morris, C. E., Schaad, N. W., Schuenzel, E. L., Lacy, G. H., Sun, X., Jones, J. B., Castillo, J. A., Bull, C. T., Leman, S., Guttman, D. S., Setubal, J. C., & Vinatzer, B. A. (2010). PAMDB, A multilocus sequence typing and analysis database and website for plant-associated microbes. Phytopathology, 100(208), 215.

    Google Scholar 

  • Araújo, E. R., Pereira, R. C., Ferreira, M. A. S. V., Quezado-Duval, A. M., & Café-Filho, A. C. (2012). Sensitivity of xanthomonads causing tomato bacterial spot to copper and streptomycin and in vivo infra-specific competitive ability in Xanthomonas perforans resistant and sensitive to copper. Journal of Plant Pathology, 94, 79–87.

    Google Scholar 

  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (1994). Current protocols in molecular biology. New York: John Wiley and Sons.

    Google Scholar 

  • Behlau, F., Hong, J. C., Jones, J. B., & Graham, J. H. (2013). Evidence for acquisition of copper resistance genes from different sources in citrus-associated xanthomonads. Phytopathology, 103, 409–418.

    Article  PubMed  CAS  Google Scholar 

  • Bouzar, H., Ahmed, N. E., Somodi, G. C., Jones, J. B., & Stall, R. E. (1994a). Characterization of Xanthomonas campestris pv.vesicatoria strains from tomato and pepper grown in Sudan. Plant Disease, 78, 12–19.

    Article  Google Scholar 

  • Bouzar, H., Jones, J. B., Stall, R. E., Hodge, N. C., & Minsavage, G. V. (1994b). Physiological, chemical, serological, and pathogenic analyses of a worldwide collection of Xanthomonas campestris pv. vesicatoria strains. Phytopathology, 84, 663–671.

    Article  CAS  Google Scholar 

  • Bouzar, H., Jones, J. B., Somodi, G. C., Stall, R. E., Daouzli, N., Lambe, R. C., Felix, G. R., & Trinidad-Correa, R. (1996). Xanthomonas campestris pv. vesicatoria race variation in tomato and pepper fields of Mexico. Canadian Journal of Plant Pathology, 18, 75–77.

    Article  Google Scholar 

  • Bouzar, H., Jones, J. B., Stall, R. E., Louws, F. J., Schneider, M., Rademaker, J. L. W., de Bruijn, F. J., & Jackson, L. E. (1999). Multiphasic analysis of xanthomonads causing bacterial spot disease on tomato and pepper in the Caribbean and Central America: evidence for common lineages within and between countries. Phytopathology, 89, 328–335.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury, J. F. (1970). Isolation and preliminary study of bacteria from plants. Review of Plant Pathology, 49(213), 218.

    Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(1792), 1797.

    Google Scholar 

  • Hamza, A. A., Robène-Soustrade, I., Jouen, E., Gagnevin, L., Lefeuvre, P., Chiroleu, F., & Pruvost, O. (2010). Genetic and pathological diversity among Xanthomonas strains responsible for bacterial spot on tomato and pepper in the southwest Indian Ocean region. Plant Disease, 94(993), 999.

    Google Scholar 

  • Hert, A. P., Roberts, P. D., Momol, M. T., Minsavage, G. V., Tudor-Nelson, S. M., & Jones, J. B. (2005). Relative importance of bacteriocin-like genes in antagonism of Xanthomonas perforans tomato race 3 to Xanthomonas euvesicatoria tomato race 1 strains 259. Applied and Environmental Microbiology, 71, 3581–3588.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Horvath, D. M., Stall, R. E., Jones, J. B., Pauly, M. H., Vallad, G. E., Dahlbeck, D., Staskawicz, B. J., & Scott, J. W. (2012). Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PloS One, 7(8), e42036. doi:10.1371/journal.pone.0042036.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jones, J. B., Pohronezny, K. L., Stall, R. E., & Jones, J. P. (1986). Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residues, weeds, seeds and volunteer tomato plants. Phytopathology, 76, 430–434.

    Article  Google Scholar 

  • Jones, J. B., Stall, R. E., Scott, J. W., Somodi, G. C., Bouzar, H., & Hodge, N. C. (1995). A third tomato race of Xanthomonas campestris pv.vesicatoria. Plant Disease, 79, 395–398.

    Article  Google Scholar 

  • Jones, J. B., Bouzar, H., Somodi, G. C., Stall, R. E., Pernezny, K., El-Morsy, G., & Scott, J. W. (1998a). Evidence for the preemptive nature of tomato race 3 of Xanthomonas campestris pv. vesicatoria in Florida. Phytopathology, 88, 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. B., Stall, R. E., & Bouzar, H. (1998b). Diversity among xanthomonads pathogenic on pepper and tomato. Annual Review of Phytopathology, 36(41), 58.

    Google Scholar 

  • Jones, J. B., Bouzar, H., Stall, R. E., Almiram, E. C., Roberts, P. D., Bowen, B. W., Sudberry, J., Strickler, P. M., & Chun, J. (2000). Systematic analysis of xanthomonads (Xanthomonas spp.) associated with pepper and tomato lesions. International Journal of Systemic and Evolution Microbiology, 50, 1211–1219.

    Article  CAS  Google Scholar 

  • Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E., & Schaad, N. W. (2004). Reclassification of the Xanthomonads associated with bacterial spot disease of tomato and pepper. Systematic and Applied Microbiology, 27(755), 762.

    Google Scholar 

  • Jones, J. B., Zitter, T. A., Momol, T. M., & Miller, S. A. (2013). Compendium of tomato diseases and pests (2nd ed.). St. Paul: APS Press.

    Google Scholar 

  • Keen, N. T., Dahlbeck, D., Staskwicz, B., & Belser, W. (1984). Molecular cloning of pectate lyase genes from Erwinia chrysanthemi and their expression in Escherichia coli. Journal of Bacteriology, 159, 825–831.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maiden, M. C. (2006). Multilocus sequence typing of bacteria. Annual Review of Microbiology, 60(561), 588.

    Google Scholar 

  • Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K., Caugant, D. A., Feavers, I. M., Achtman, M., & Spratt, B. G. (1998). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences, 95, 3140–3145.

    Article  CAS  Google Scholar 

  • Mbega, E. R., Mabagala, R. B., Adriko, J., Lund, O. S., Wulff, E. G., & Mortensen, C. N. (2012). Five species of xanthomonads associated with bacterial leaf spot symptoms in tomato from Tanzania. Plant Disease, 96, 760.

    Article  Google Scholar 

  • Obradovic, A., Mavridis, A., Rudolph, K., Janse, J. D., Arsenijevic, M., Jones, J. B., Minsavage, G. V., & JawFen, W. (2004). Characterization and PCR-based typing of Xanthomonas campestris pv. vesicatoria from peppers and tomatoes in Serbia. European Journal of Plant Pathology, 110, 285–292.

    Article  CAS  Google Scholar 

  • OEPP/EPPO. (1988). Data sheets on quarantine organisms No. 157, Xanthomonas campestris pv. vesicatoria. OEPP/EPPO Bulletin, 18, 521–526.

    Article  Google Scholar 

  • Parkinson, N., Aritua, V., Heeney, J., Cowie, C., Bew, J., & Stead, D. (2007). Phylogenetic analysis of Xanthomonas species by comparison of partial gyrase B gene sequences. International Journal of Systemic and Evolution Microbiology, 57(2881), 2887.

    Google Scholar 

  • Parkinson, N., Cowie, C., Heeney, J., & Stead, D. (2009). Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. International Journal of Systemic and Evolution Microbiology, 59(264), 274.

    Google Scholar 

  • Pohronezny, K., & Volin, R. B. (1983). The effect of bacterial spot on yield and quality of fresh market tomatoes. Horticultural Science, 18(69), 70.

    Google Scholar 

  • Posada, D. (2008). jModel Test: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.

    Article  PubMed  CAS  Google Scholar 

  • Potnis, N., Krasileva, K., Chow, V., Almeida, N. F., Patil, P. B., Ryan, R. P., Sharlach, M., Behlau, F., Dow, J. M., Momol, M. T., White, F. F., Preston, J. F., Vinatzer, B. A., Koebnik, R., Setubal, J. C., Norman, D. J., Staskawicz, B. J., & Jones, J. B. (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics, 12, 146.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Quezado-Duval, A. M., & Camagro, L. E. A. (2004). Raças de Xanthomonas spp. associadas à mancha-bacteriana em tomate para processamento industrial no Brasil. Horticultura Brasileira, Brasília, 22, 80–86.

    Article  Google Scholar 

  • Quezado-Duval, A. M., Leite, R. P., Jr., Truffi, D., & Camargo, L. E. A. (2004). Outbreaks of bacterial spot caused by Xanthomonas gardneri on processing tomato in central-west Brazil. Plant Disease, 88(157), 161.

    Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 15721574.

    Article  Google Scholar 

  • Sahin, F., & Miller, S. A. (1996). Characterization of Ohio strains of Xanthomonas campestris pv. vesicatoria, causal agent of bacterial spot of pepper. Plant Disease, 80, 773–778.

    Article  Google Scholar 

  • Schornack, S., Minsavage, G. V., Stall, R. E., Jones, J. B., & Lahaye, T. (2008). Characterization of AvrHah1, a novel AvrBs3-like effector from Xanthomonas gardneri with virulence and avirulence activity. New Phytologist, 178, 546–556.

    Article  Google Scholar 

  • Sharlach, M., Dahlbeck, D., Liu, L., Chiu, J., Jiménez-Gómez, J. M., Kimura, S., Koenig, Maloof, J. N., Sinha, N., Minsavage, G. V., Jones, J. B., Stall, R. E., & Staskawicz, B. J. (2013). Fine genetic mapping of RXopJ4, a bacterial spot disease resistance locus from Solanum pennellii LA716. Theoretical and Applied Genetics, 126, 601–609.

    Article  PubMed  CAS  Google Scholar 

  • Shenge, K. C., Mabagala, R. B., & Mortensen, C. N. (2007). Identification and characterization of strains of Xanthomonas campestris pv. vesicatoria from Tanzania by biolog system and sensitivity to antibiotics. African Journal of Biotechnology, 6(1), 15–22.

    CAS  Google Scholar 

  • Stall, R. E., & Thayer, P. L. (1962). Streptomycin resistance of the bacterial spot pathogen and control with streptomycin. Plant Disease Report, 46, 389–392.

    CAS  Google Scholar 

  • Stall, R. E., Beaulieu, C., Egel, D., Hodge, N. C., & Leite, R. P. (1994). Two genetically diverse groups of strains are included in Xanthomonas campestris pv. vesicatoria. International Journal of Systematic Bacteriology, 44, 47–53.

    Article  Google Scholar 

  • Stall, R. E., Jones, J. B., & Minsavage, G. V. (2009). Durability of resistance in tomato and pepper to Xanthomonads causing Bacterial Spot. Annual Review of Phytopathology, 47(265), 284.

    Google Scholar 

  • Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688–2690.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., Daniel, P., Nicholas, P., Glen, S., Masatoshi, N., & Sudhir, K. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vauterin, L., Hoste, B., Kersters, K., & Swings, J. (1995). Reclassification of Xanthomonas. International Journal of Systemic Bacteriology, 45, 472–489.

    Article  CAS  Google Scholar 

  • Young, J. M., Park, D. C., Shearman, H. M., & Fargier, F. (2008). A multilocus sequence analysis of the genus Xanthomonas. Systematic and Applied Microbiology, 31, 366–377.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Z. H., Wang, J. F., Stall, R. E., & Vallejos, C. C. (1995). Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) Dye. Genetics, 141, 675–682.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial supports of Swedish International Development Cooperation Agency (SIDA) for research and Dr. J. B. Jones for identification of bacterial isolates were greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary E. Vallad.

Additional information

Misrak Kebede and Sujan Timilsina contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebede, M., Timilsina, S., Ayalew, A. et al. Molecular characterization of Xanthomonas strains responsible for bacterial spot of tomato in Ethiopia. Eur J Plant Pathol 140, 677–688 (2014). https://doi.org/10.1007/s10658-014-0497-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0497-3

Keywords

Navigation