Skip to main content
Log in

Fusarium oxysporum f. sp. lycopersici retardation through induction of defensive response in tomato plants using a liquid formulation of Pseudomonas fluorescens (Pf1)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A liquid based Pseudomonas fluorescens (Pf1) bioformulation was found to contribute the restriction of Fusarium oxysporum f. sp. lycopersici in tomato roots by inducing defence enzymes. Induction of defence enzymes such as phenylalanine ammonia lyase (PAL), peroxidase (PO), polyphenoloxidase (PPO), catalase, β-1,3 glucanase and super oxide dismutase (SOD), was studied in tomato plants pretreated with liquid as well as a talc based formulation of Pf1 challenged with F. oxysporum f. sp. lycopersici in glasshouse vegetable production systems. There were increased activities of PAL, PO, PPO, catalase and β-1 3-glucanases in tomato plants treated with a combined application of seedling dip + soil application + foliar spray of liquid and talc formulation of Pf1 when compared to pathogen inoculated and untreated healthy controls. The activities of the above enzymes started to increase at 3rd day, reached maximum levels on 8-9th day and thereafter declined gradually. Similarly, native polyacralamide gel electrophoresis (PAGE) analysis revealed that one to six isoforms of the defence enzymes each with a higher intensity were expressed in these treatments, whereas fewer isoforms with less intensity were noticed in inoculated controls. These results suggest that the retardation of the invasion of F. oxysporum f. sp. lycopersici in tomato roots resulting from treatment with the liquid formulation of Pf1 was due to enhancement of activities of enzymes involved in the phenylpropanoid pathway. These results suggest that induced systemic resistance occurred in the treated tomato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Azevedo, R. A., Alas, R. M., Smith, R. J., & Lea, P. J. (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Plant Physiology, 104, 280–292.

    Article  CAS  Google Scholar 

  • Bashan, Y. (1986). Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biology and Biochemistry, 18, 297–301.

    Article  Google Scholar 

  • Benhamou, N., Gagne, S., Quere, D. L., & Dehbi, L. (2000). Bacterial-mediated induced resistance in cucumber: Beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology, 90, 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Bharathi, R., Vivekananthan, R., Harish, S., Ramanathan, A., & Samiyappan, R. (2004). Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Protection, 23, 835–843.

    Article  Google Scholar 

  • Boller, T., & Mauch, F. (1988). Colorimetric assay for chitinase. Methods in Enzymology, 161, 430–435.

    Article  CAS  Google Scholar 

  • Bowler, C., Van Montagu, M., & Inzé, D. (1992). Superoxide- dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 83–116.

    Article  CAS  Google Scholar 

  • Bruce, R. J., & West, C. A. (1989). Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiology, 91, 889–897.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chaparro–Giraldo, A., Barata, R. M., Chabregas, S. M., Azevedo, R. A., & Silva–Filho, M. C. (2000). Soybean leghemoglobin targeted to potato chloroplasts influences growth and development of transgenic plants. Plant Cell Reports, 19, 961–965.

    Article  Google Scholar 

  • Chen, C., Belanger, R. R., Benhamou, N., & Paullitz, T. C. (2000). Defense enzymes induced in cucumber roots by treatment with plant-growth promoting rhizobacteria (PGPR). Physiology and Molecular Plant Pathology, 56, 13–23.

    Article  CAS  Google Scholar 

  • Chet, I. (1987). Trichoderma - application, mode of action, and potential as a biocontrol agent of soilborne plant pathogenic fungi (Pages 137–160 In: Innovative approaches to Plant Disease Control., Ed). New York: Wiley.

    Google Scholar 

  • Daayf, F., Bel-Rhlid, R., & Belanger, R. R. (1997). Methyl ester of p-coumaric acid: A phytoalexin-like compound from long English cucumber leaves. Journal of Chemical Ecology, 23, 1517–1526.

    Article  CAS  Google Scholar 

  • De Meyer, G., Audenaert, K., & Hofte, M. (1999). Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on plant salicylic acid but is not associated with PR 1a expression. European Journal of Plant Pathology, 105, 513–517.

    Article  Google Scholar 

  • Dickerson, D. P., Pascholati, S. F., Hagerman, A. E., Butler, L. G., & Nicholson, R. L. (1984). Phenylalanine ammonia-lyase and hydroxy cinnamate CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiological Plant Pathology, 25, 111–123.

    Article  CAS  Google Scholar 

  • Dobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 22, 107–149.

    Article  CAS  Google Scholar 

  • Duijff, B. J., Pouhair, D., Olivain, C., Alabouvette, C., & Lemanceau, P. (1998). Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. European Journal of Plant Pathology, 104, 903–910.

    Article  Google Scholar 

  • Fages, J. (1994). Azospirillum inoculants and field experiments. In Y. Okon (Ed.), Azospirillum / Plant Associations (pp. 87–110). Florida, USA: CRC Press.

    Google Scholar 

  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.

    Article  CAS  Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical Procedure for Agricultural Research. New York: Wiley.

    Google Scholar 

  • Grant, J. J., & Loake, G. J. (2000). Role of reactive oxygen intermediates and cognate redox signalling in disease resistance. Plant Physiology, 124, 21–29.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ham, K. S, Kauffmann, S., Albersheim, P., & Darvill, A. G. (1991). Host-pathogen interactions. A soybean pathogenesis-related protein with β-1,3-glucanase activity releases phytoalexin elicitor-active heat-stable fragments from fungal cell walls. Molecular Plant-Microbe Interaction, 4, 545–552.

  • Hammerschmidt, R., & Kuc, J. (1995). Induced Resistance to Disease in Plants. The Netherlands: Kluwer Academic Publishers, Dordrecht. 182.

    Book  Google Scholar 

  • Hammerschmidt, R., Nuckles, E. M., & Kuc, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology, 20, 73–82.

    Article  CAS  Google Scholar 

  • Harish, S. (2005). Molecular biology and diagnosis of Banana bunchy top virus and its management through induced systemic resistance. Ph.D. (Ag.,) Thesis, TNAU, Coimbatore-3, India. pp. 126

  • Hegde, S. V. (2002). Liquid Biofertilizers in Indian Agriculture. Biofertilizer News Letter, 12, 17–22.

    Google Scholar 

  • Idriss, E. E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., Richter, T., & Borriss, R. (2002). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plantgrowth-promoting effect. Microbiology, 148, 2097–2109.

  • Jayaraman, K. S., Ramanuja, M. N., Vijayaraghavan, P. K., & Vaidyanathan, C. S. (1987). Oxidative enzyme in pearl millet. Food Chemistry, 24, 203.

    Article  CAS  Google Scholar 

  • Kandan, A., Ramiah, M., Radjacommare, R., Nandakumar, R., Raguchander, T., & Samiyappan, R. (2002). Induction of Phenylpropanoid metabolism by Pseudomonas fluorescens against tomato spotted wilt virus in tomato. Folia Microbiologica, 47(2), 121–129.

    Article  PubMed  CAS  Google Scholar 

  • Kloepper, J. W. (1992). Plant growth-promoting rhizobacteria as biological control agents. In F. B. Metting Jr. (Ed.), Soil microbial ecology: applications in agricultural and environmental management (pp. 255–274). New York, USA: Marcel Dekker Inc.

    Google Scholar 

  • Kolombet, L. V., Zhigletsova, S. K., Kosarava, N. I., Bystron, E. V., Derbyshev, V. V., Krasonosa, S. P., & Schiler, D. (2008). Development of extended shelf life of liquid formulation of the bio fungicide Trichoderma asperellum. World Journal of Microbiology and Biotechnology, 24, 123–131.

    Article  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Leeman, M., Van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M., & Schippers, B. (1995). Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology, 85, 1021–1027.

    Article  CAS  Google Scholar 

  • Liu, L., Kloepper, J. W., & Tuzun, S. (1995a). Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting Rhizobacteria. Phytopathology, 85, 695–698.

    Article  Google Scholar 

  • Liu, L., Kloepper, J. W., & Tuzun, S. (1995b). Induction of systemic resistance in cucumber against bacterial leaf spot by plant growth promoting rhizobacteria. Phytopathology, 85, 843–847.

    Article  Google Scholar 

  • Manikandan, R., Saravanakumar, D., Rajendran, L., Raguchander, T., & Samiyappan, R. (2010). Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biological Control, 30, 1–8.

    Google Scholar 

  • Maurhofer, M., Hase, C., Meuwly, P., Métraux, J. P., & Defago, G. (1994). Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas flourescens strain CHAO: influence of the gacA gene and of pyoverdine production. Phytopathology, 84, 139–146

  • Mayer, A. M., Harel, E., & Shaul, R. B. (1965). Assay of catechol oxidase a critical comparison of methods. Phytochemistry, 5, 783–789.

    Article  Google Scholar 

  • Nandakumar, R., Babu, S., Viswanathan, R., Raguchander, T., & Samiyappan, R. (2001). Induction of systemic resistance in rice against sheath blight disease by plant growth promoting rhizobacteria. Soil Biology & Biochemistry, 33, 603–612.

    Article  CAS  Google Scholar 

  • Olivain, C., Alabouvette, C., & Steinberg, C. (2004). Production of a mixed inoculum of Fusarium oxysporum Fo47 and Pseudomonas fluorescens C7 to control Fusarium diseases. Biocontrol Science and Technology, 14, 227–238.

    Article  Google Scholar 

  • Pan, Q., Te, Y. S., & Kuc, J. (1991). A technique for detection of chitinases, β-1,3- glucanases and protein patterns after single separation using PAGE or isoelectric focusing. Phytopathology, 81, 970–974.

    Article  CAS  Google Scholar 

  • Pan, S. Q., Ye, X. S., & Kuć, J. (1989). Direct detection of beta-1,3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels. Analytical Biochemistry, 182(1), 136–140.

    Article  PubMed  CAS  Google Scholar 

  • Pieterse, C. M. I., van Wees, S. C. M., Hoffland, E., van Pelt, J. A., & van Loon, L. C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell, 8, 1225–1237.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Radjacommare, R. (2000). Pseudomonas fluorescens mediated systemic resistance in rice against sheath blight disease and leaffolder insect. M. Sc. (Ag.,) Thesis, Tamil Nadu Agricultural University, Coimbatore-3, India. pp. 119

  • Radjacommare, R., Kandan, A., Nandakumar, R., & Samiyappan, R. (2004). Association of the hydrolytic enzyme chitinase against Rhizoctonia solani in rhizobacteria-treated rice Plants. Journal of Phytopathology, 152, 365–370.

    Article  CAS  Google Scholar 

  • Ramamoorthy, V., Raguchander, T., & Samiyappan, R. (2002a). Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads. European Journal of Plant Pathology, 108, 429–441.

    Article  CAS  Google Scholar 

  • Ramamoorthy, V., Raguchander, T., & Samiyappan, R. (2002b). Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant and Soil, 239, 55–68.

    Article  CAS  Google Scholar 

  • Ramanathan, A., Samiyappan, R., & Vidhyasekaran, P. (2000). Induction of defense mechanisms in green gram leaves and suspension-cultured cells by Macrophomina phaseolina and its elicitors. Journal of Plant Disease and Protection, 107, 245–257.

    CAS  Google Scholar 

  • Reimers, P. J., Guo, A., & Leach, J. E. (1992). Increased activity of cationic peroxidase associated with an incompatible interaction between Xanthomonas oryzae pv. oryzae and rice (Oryza sativa). Plant Physiology, 99, 1044–1050.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saravanakumar, D., Lavanya, N., Muthumeena, K., Raguchander, T., & Samiyappan, R. (2009). Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. Biocontrol, 54(2), 273–286.

    Article  Google Scholar 

  • Scandalios, J. G. (1994). Regulation and properties of plant catalases. In C. H. Foyer & P. M. Mullineaux (Eds.), Causes of photo-oxidative stress and amelioration of defense systems in plants (pp. 275–316). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Sindhu, J. S., Ravi, S., & Minocha, J. L. (1984). Peroxidase isozyme patterns in primary trisomics of pearl millet. Theoretical and Applied Genetics, 68, 179–182.

    Google Scholar 

  • Singleton, P.W., Keyser, H. H., & Sande, E. S. (2002). Development and evaluation of liquid inoculants and nitrogen fixation of legumes in Vietnam. (ed.) D. Herridge, ACIAR Proceedings, 109e, pp. 52–66

  • Srivastava, A. K., Singh, T., Jana, T. K., & Arora, D. (2001). Induced resistance and control of charcoal rot in Cicer arietinum (chickpea) by Pseudomonas fluorescens. Canadian Journal of Botany, 79, 787–795.

    Article  Google Scholar 

  • Sticher, L., Mauch-Mani, B., & Metraux, J. P. (1997). Systemic acquired resistance. Annual Review Phytopathology, 35, 235–270.

    Article  CAS  Google Scholar 

  • Torres, R., Usall, J., Teixido, N., Abadias, M., & Vinas, I. (2003). Liquid formulation of the biocontrol agent Candida sake by modifying water activity or adding protectants. Journal of Applied Microbiology, 94, 330–339.

    Article  PubMed  CAS  Google Scholar 

  • Tronsmo, A., Klemsdal, S.S., Hayes, C.K., Lorito, M., & Harman, G. E. (1993). The role of hydrolytic enzymes produced by Trichoderma harzianum in biological control of plant diseases, Trichoderma reesei cellulases and other hydrolases. Enzyme structure, Biochemistry, Genetics and applications. Foundation for Biotechnological and Industrial Research, Fermentation Research, Helsinki, Finland, 8, 159–168

  • van Peer, R., Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417r. Phytopathology, 81, 728–734

  • Vendan, R. T., & Thangaraju, D. (2006). Development and standardization of liquid formulation for Azospirillum bioinoculant. Indian Journal of Microbiology, 46(4), 379–387.

    CAS  Google Scholar 

  • Viswanathan, R., & Samiyappan, R. (1999). Induction of systemic resistance by plant growth promoting rhizobacteria against red rot disease caused by Colletotrichum falcatum Went. in sugarcane. Proceedings of Sugar Technologist Association of India, 61, 24–39.

    Google Scholar 

  • Viswanathan, R., & Samiyappan, R. (2001). Antifungal activity of chitinase produced by some fluorescent pseudomonads against Colletotrichum falcatum Went causing red rot disease in sugarcane. Microbiological Research, 155, 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Vivekananthan, R., Ravi, M., Ramanathan, A., & Samiyappan, R. (2004). Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthracnose pathogen in mango. World Journal of Microbiology and Biotechnology, 20, 235–244.

    Article  CAS  Google Scholar 

  • Zdor, R. E., & Anderson, A. J. (1992). Influence of root colonizing bacteria on the defense responses in bean. Plant and Soil, 140, 99–107.

  • Zhu-Salzman, K., Jian -long, B., & Liu., T.-x. (2005). Molecular strategies of plant defense and insect counter-defense. Insect Science, 12, 3–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Manikandan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, R., Raguchander, T. Fusarium oxysporum f. sp. lycopersici retardation through induction of defensive response in tomato plants using a liquid formulation of Pseudomonas fluorescens (Pf1). Eur J Plant Pathol 140, 469–480 (2014). https://doi.org/10.1007/s10658-014-0481-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0481-y

Keywords

Navigation