Skip to main content

Advertisement

Log in

Effect of salicylic acid treatment on tomato plant physiology and tolerance to potato virus X infection

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) is an inducer of systemic acquired resistance (SAR) and could be a potential candidate in the control of plant virus diseases. In this study we assayed under controlled conditions the potential effect of three doses of exogenous SA treatment on tomato plants infected with Potato virus X (PVX) and measured their effects on: different physiological parameters (gas exchange, stable isotopes, chlorophyll content), the activation of secondary metabolism, viral accumulation and induction of the expression of pathogenesis-related proteins (PRs) such as ß-1, 3-glucanase (PR2) and chitinase (PR3). SA treatment increased the expression of PR2, the activity of phenylalanine ammonia lyase (PAL) and the concentration of antioxidant compounds at 7 days post-treatment. Earlier expression of PR3 compared to PR2 was observed. SA treatment delayed the detection of PVX by ELISA in uninoculated leaves of mechanically infected tomato plants. Although the effect of PVX infection on physiological parameters was weak, moderate SA treatments showed enhanced photosynthesis, particularly for infected plants. The results obtained confirm that SA promotes major changes in the induction of resistance in tomato plants and suggest that treatment with exogenous SA could be considered to reduce the infections caused by PVX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alamillo, J. M., Saenz, P., & Garcia, J. A. (2006). Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. The Plant Journal, 48, 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Aminalah, T., Maryam, Z., Asma, T., Akbar, D., & Mina, K. H. (2011). Role of salicylic acid in resistance to plant viruses. Genetics in the 3rd Millennium, 8, 2203–2212.

    Google Scholar 

  • An, C., & Mou, Z. (2011). Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology, 53, 412–428.

    Article  CAS  PubMed  Google Scholar 

  • Arfan, M., Athar, H. R., & Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology, 164, 685–694.

    Article  CAS  PubMed  Google Scholar 

  • Assis, J. S., Maldonado, R., Muñoz, T., Escribano, M., & Merodio, C. (2001). Effect of high carbon dioxide concentration on PAL activity and phenolic contents in ripening cherimoya fruit. Postharvest Biology and Technology, 23, 33–39.

    Article  CAS  Google Scholar 

  • Audenaert, K., Pattery, T., Cornelis, P., & Hofte, M. (2002). Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2. Role of salicylic acid pyochelin, and pyocyanin. Molecular Plant Microbe Interactions, 15, 1147–1156.

    Article  CAS  PubMed  Google Scholar 

  • Baebler, Š., Stare, K., Kovač, M., Blejec, A., Prezelj, N., Stare, T., et al. (2011). Dynamics of responses in compatible potato - Potato virus Y interaction are modulated by salicylic acid. PLoS ONE, 6(12), e29009. doi:10.1371/journal.pone.0029009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkosky, R. R., & Einhellig, F. A. (1993). Effects of salicylic acid on plant–water relationships. Journal of Chemical Ecology, 19, 237–247.

    Article  CAS  PubMed  Google Scholar 

  • Bokshi, A. I., Morris, S. C., & Deverall, B. J. (2003). Effects of benzothiadiazole and acetylsalicylic acid on β-1,3-glucanase activity and disease resistance in potato. Plant Pathology, 52, 22–27.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Annals of Biochemistry, 72, 48–254.

    Article  Google Scholar 

  • Carr, J. P., Lewsey, M. G., & Palukaitis, P. (2010). Signaling in induced resistance. Advances in Virus Research, 76, 57–121.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J. Y., Peng-Fei, W., Kong, W. F., Pan, Q. H., Zhan, J. C., Li, J. M., et al. (2006). Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biology and Technology, 40, 64–72.

    Article  CAS  Google Scholar 

  • Chivasa, S., Murphy, A. M., Naylor, M., & Carr, J. P. (1997). Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism. Plant Cell, 9, 547–557.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, M. F., & Adams, A. N. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34, 475–483.

    Google Scholar 

  • Cota, I. E., Troncaso-Rojas, R., Sotelo-Mundo, R., Sanchez-Estrada, A., & Tiznado-Hernandez, M. E. (2007). Chitinase and ß-1, 3-glucanase enzymatic activities in response to infection by Alternaria alternata evaluated in two stages of development in different tomato fruit varieties. Scientia Horticulturae, 112, 42–50.

    Article  CAS  Google Scholar 

  • Dardick, C. D., Golem, S., & Culver, J. N. (2000). Susceptibility and symptom development in Arabidopsis thaliana to tobacco mosaic virus is influenced by virus cell-to-cell movement. Molecular Plant– Microbe Interactions, 13, 1139–1144.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoids metabolism. Plant Cell, 7, 1085–1097.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Don, J., Wan, G., & Liang, Z. (2010). Accumulation of salycilic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology, 148, 99–104.

    Article  Google Scholar 

  • Durner, J., Shah, J., & Klessig, D. F. (1997). Salicylic acid and disease resistance in plants. Trends in Plant Science, 2, 266–274.

    Article  Google Scholar 

  • Elwan, M. W. M., & El-Hamahmy, M. A. M. (2009). Improved productivity and quality associated with salicylic acid application in greenhouse. Scientia Horticulturae, 122, 521–526.

    Article  CAS  Google Scholar 

  • Eraslan, F., Inal, A., Gunes, A., & Alpaslan, M. (2007). Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113, 120–128.

    Article  CAS  Google Scholar 

  • Farquhar, G. D., Hubick, K. T., Condon, A. G., & Richards, R. A. (1989). Carbon isotope fractionation and plant water-use efficiency. In P. W. Rundel, J. R. Ehleringer, & K. A. Nagy (Eds.), Stable isotopes in ecological research (Vol. 68, pp. 21–40). New York: Springer cop.

    Chapter  Google Scholar 

  • Farquhar, G. D., Barbour, M. M., & Henry, B. K. (1998). Interpretation of oxygen isotope compostion of leaf material. In H. Griffiths (Ed.), Stable isotopes: Integration of biological, ecological and geochemical processes (pp. 27–62). Oxford: BIOS Scientific Publishers.

    Google Scholar 

  • Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., & Ball, L. A. (2005). Virus taxonomy: Eighth report of the international committee on taxonomy of viruses. San Diego: Elsevier.

    Google Scholar 

  • Flexas, J., Barbour, M. M., Brendel, O., Cabrera, H. M., Carriquí, M., Díaz-Espejo, A., et al. (2012). Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Science, 194, 70–84.

    Article  Google Scholar 

  • Friedrich, L., Vernooij, B., Gaffney, T., Morse, A., & Ryals, J. (1995). Characterization of tobacco plants expressing a bacterial salicylate hydroxylase gene. Plant Molecular Biology, 29, 959–968.

    Article  CAS  PubMed  Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., Ryals, J. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261(5122), 754–756.

    Google Scholar 

  • Giné Bordonaba, J., & Terry, L. (2009). Development of a glucose biosensor for rapid assessment of strawberry quality: relationship between biosensor response and fruit composition. Journal of Agricultural and Food Chemistry, 57, 8220–8226.

    Article  PubMed  Google Scholar 

  • Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Guneri Bagci, E., & Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164(6), 728–736.

    Article  CAS  PubMed  Google Scholar 

  • Habibi, G. (2012). Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biologica Szegediensis, 56(1), 57–63.

    Google Scholar 

  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad. (2009). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68(1), 14–25.

    Article  Google Scholar 

  • He, Y., & Zhu, Z. J. (2008). Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biologia Plantarum, 52, 792–795.

    Article  CAS  Google Scholar 

  • Hooft van Huijsduijnen, R. A. M., Alblas, S. W., De Rijk, R. H., & Bol, J. F. (1986). Induction by salicylic acid of pathogenesis-related proteins and resistance to Alfalfa Mosaic virus infection in various plant species. Journal of General Virology, 67, 2135–2143.

    Article  CAS  Google Scholar 

  • Huang, Z. L., Yeakley, J. M., Garcia, E. W., Holdridge, J. D., Fan, J. B., & Whitham, S. A. (2005). Salicylic acid-dependent expression of host genes in compatible Arabidopsis–virus interactions. Plant Physiology, 137, 1147–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janas, K. M., Cvikrov’a, M., Palagiewicz, A., Szafranska, K., & Posmyk, M. M. (2002). Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Sciences, 163, 369–373.

    Article  CAS  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Khurana, S. M. P., & Singh, M. N. (1988). Yield loss potential of potato viruses X and Y in Indian potatoes. Journal of Indian Potato Association, 15, 27–29.

    Google Scholar 

  • Lafuente, M. T., Sala, J. M., & Zacarias, L. (2004). Active oxygen detoxifying enzymes and phenylalanine ammonia-lyase in the ethylene-induced chilling tolerance in citrus fruit. Journal of Agricultural and Food Chemistry, 52, 3606–3611.

    Article  CAS  PubMed  Google Scholar 

  • Larque-Saavedra, A. (1979). Stomatal closure in response to acetylsalicylic acid treatment. Zeitschrift Pflanzenphysiologie, 93, 371–375.

    Article  CAS  Google Scholar 

  • Larqué-Saavedra, A., Martín-Mex, R., Nexticapan-Garcéz, A., Vergara-Yoisura, S., & Gutiérrez-Rendón, M. (2010). Efecto del ácido salicílico en el crecimiento de plántulas de tomate (Lycopersicon esculentum Mill.). Revista Chapingo Serie Horticultura, 16, 183–187.

    Google Scholar 

  • Lee, W.-S., Fu, S.-F., Verchot-Lubicz, J., & Carr, J. P. (2011). Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to Potato virus X. BMC Plant Biology, 11, 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennon, A. M., Neuenschwander, U. H., Ribas-Carbo, M., Giles, L., Ryals, J. A., & Siedow, J. N. (1997). The effects of salicylic acid and tobacco mosaic virus infection on the alternative oxidase of tobacco. Plant Physiology, 115, 783–791.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Love, A. J., Yun, B. W., Laval, V., Loake, G. J., & Milner, J. J. (2005). Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiology, 139, 935–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., & Lawton, K. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 26, 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, S., Mallick, M., & Mitra, A. (2009). Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiology and Biochemistry, 47, 642–649.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell, D. P., Wang, Y., & McIntosh, L. (1999). The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proceedings of the National Academy of Sciences U.S.A., 96, 8271–8276.

    Article  CAS  Google Scholar 

  • Mayers, C. N., Lee, K.-C., Moore, C. A., Wong, S.-M., & Carr, J. P. (2005). Salicylic acid-induced resistance to cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action. Molecular Plant-Microbe Interactions, 18, 428–434.

    Article  CAS  PubMed  Google Scholar 

  • Mur, L. A. J., Bi, Y. M., Darby, R. M., Firek, S., & Draper, J. (1997). Compromising early salicylic acid accumulation delays the hypersensitive response and increases viral dispersal during lesion establishment in TMV-infected tobacco. Plant Journal, 12, 1113–1126.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, A. M., & Carr, J. P. (2002). Salicylic acid has cell-specific effects on tobacco mosaic virus replication and cell-to-cell movement. Plant Physiology, 128, 552–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, A. M., Chivasa, S., Singh, D. P., Carr, J. P. (1999). Salicylic acid-induced resistance to viruses and other pathogens: a parting of the ways? Trends Plant Science, 4, 155–160.

    Google Scholar 

  • Naylor, M., Murphy, A. M., Berry, J. O., & Carr, J. P. (1998). Salicylic acid can induce resistance to plant virus movement. Molecular Plant-Microbe Interactions, 11, 860–868.

    Article  CAS  Google Scholar 

  • Niehl, A. C., Lacomme, C. B., Erban, A., Kopka, J. A., Kramer, K. A., & Fisahn, J. A. (2006). Systemic Potato virus X infection induces defence gene expression and accumulation of β-phenylethylamine-alkaloids in potato. Functional Plant Biology, 33, 593–604.

    Article  CAS  Google Scholar 

  • Pieterse, C. M. J., van Loon, L. C. (1999). Salicylic acid-independent plant defence pathways. Trends in Plant Science, 4(2), 52–58.

    Google Scholar 

  • Radwan, D. E. M., Ali Fayez, K., Younis Mahmoud, S., Hamad, A., & Lu, G. (2006). Salicylic acid alleviates growth inhibition and oxidative stress caused by zucchini yellow mosaic virus infection in Cucurbita pepo leaves. Physiological and Molecular Plant Pathology, 69(4–6), 172–181.

    Article  CAS  Google Scholar 

  • Radwan, D. E. M., Fayez, K. A., Mahmud, S. Y., Hamad, A., Lu, G. (2007). Physiological and metabolic changes of Cucurbita pepo leaves in response to zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiology and Biochemistry, 45, 480–489.

    Google Scholar 

  • Radwan, D. E. M., Lu, G., Fayez, K. A., & Mahmoud, S. Y. (2008). Protective action of salicylic acid against bean yellow mosaic virus infection in Vicia faba leaves. Journal of Plant Physiology, 165, 845–857.

    Article  CAS  PubMed  Google Scholar 

  • Radwan, D. E. M., Fayez, K. A., Mahmoud, S. Y., & Lu, G. (2010). Modifications of antioxidant activity and protein composition of bean leaf due to bean yellow mosaic virus infection and salicylic acid treatments. Acta Physiologiae Plantarum, 32, 891–904.

    Article  CAS  Google Scholar 

  • Rai, V. K., Sharma, S. S., & Sharma, S. (1986). Reversal of ABA-induced stomatal closure by phenolic compounds. Journal of Experimental Botany, 37, 129–134.

    Article  CAS  Google Scholar 

  • Rao, M. V., & Davis, R. D. (1999). Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant Journal, 17, 603–614.

    Article  CAS  PubMed  Google Scholar 

  • Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. D. (1990). Salicylic acid levels in thermogenic and nonthermogenic plants. Annals of Botany, 66, 369–373.

    CAS  Google Scholar 

  • Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y., & Hunt, M. D. (1996). Systemic acquired resistance. The Plant Cell, 8, 1809–1819.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sampol, B., Bota, J., Riera, D., Medrano, H., & Flexas, J. (2003). Analysis of the virus-induced inhibition of photosynthesis in malmsey grapevines. New Phytologist, 160, 403–412.

    Article  CAS  Google Scholar 

  • Sánchez, G., Gerhardt, N., Siciliano, F., Vojnov, A., Malcuit, I., Marano, M. R. (2010). Salicylic acid is involved in the Nb-mediated defense responses to Potato virus X in Solanum tuberosum. Molecular Plant-Microbe Interactions, 23(4), 394–405.

    Google Scholar 

  • Scheidegger, Y., Saurer, M., Bahn, M., & Siegwolf, R. (2000). Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia, 125, 350–357.

    Article  Google Scholar 

  • Senaratna, T., Merrit, D., Dixon, K., Bunn, E., Touchell, D., & Sivasithamparam, K. (2003). Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regulation, 39, 77–81.

    Article  CAS  Google Scholar 

  • Sgarbi, E., Fornasiero, R. B., Lins, A. P., & Bonatti, P. M. (2003). Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sciences, 165, 951–957.

    Article  CAS  Google Scholar 

  • Solecka, D., & Kacperska, A. (2003). Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiologiae Plantarum, 119, 253–262.

    Article  CAS  Google Scholar 

  • Stevens, J., Senaratna, T., & Sivasithamparam, K. (2006). Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regulation, 49, 77–83.

    CAS  Google Scholar 

  • Wang, Y., & Liu, J. H. (2012). Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck). Journal of Plant Physiology, 169(12), 1143–1149.

    Article  CAS  PubMed  Google Scholar 

  • White, R. F. (1979). Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 2, 410–412.

    Article  Google Scholar 

  • Whitham, S. A., Quan, S., Chang, H. S., Cooper, B., Estes, B., Zhu, T., et al. (2003). Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. The Plant Journal, 33, 271–283.

    Google Scholar 

  • Wobbe, K. K., & Klessig, D. F. (1996). Salicylic acid: An important signal in plants. In D. P. S. Verma (Ed.), Plant gene research: Signal transduction and development (pp. 167–196). Wien: Springer.

    Chapter  Google Scholar 

  • Wong, C. E., Carson, R. A., & Carr, J. P. (2002). Chemically induced virus resistance in Arabidopsis thaliana is independent of pathogenesis-related protein expression and the NPR1 gene. Molecular Plant-Microbe Interactions, 15, 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J., Davis, L. T., & Verpoort, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Journal of Biotechnology, 23, 283–333.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the MINCYT (project ref. AGL2010-15691). We would like to thank Dr Thierry Candresse of Biologie du Fruit et Pathologie, INRA and Bordeaux University for providing Potato virus X (PVX) (Accession number: AF172259). TF was supported by Torres Quevedo Programme (PTQ-10-02833). JPF was supported by Ramón y Cajal Programme (RYC-2008-02050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Falcioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falcioni, T., Ferrio, J.P., del Cueto, A.I. et al. Effect of salicylic acid treatment on tomato plant physiology and tolerance to potato virus X infection. Eur J Plant Pathol 138, 331–345 (2014). https://doi.org/10.1007/s10658-013-0333-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0333-1

Keywords

Navigation