Skip to main content
Log in

Chemical disinfectants can reduce potato blackleg caused by ‘Dickeya solani

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Treatments of tubers with chemical disinfectants (70 % ethanol, 1 % sodium hypochlorite, 2 % copper sulphate, 5 % peracetic acid, 10 % hydrogen peroxide, 1 % MennoClean (benzoic acid), 5 % trisodium phosphate and 0.2 % caffeine) were evaluated for control of blackleg caused by ‘D. solani’. All disinfectants effectively killed bacteria in axenic cultures within 5 min and all, except hydrogen peroxide and trisodium phosphate, were able to kill ‘D. solani’ in spiked potato extracts. Treatments with all disinfectants except trisodium phosphate, reduced the pathogen populations on the periderm of tubers previously inoculated by dipping in a suspension of ‘D. solani’, when the disinfectant was applied for at least 15 min. However, in replicated greenhouse experiments, treatments with all disinfectants except hydrogen peroxide and caffeine resulted in phytotoxicity, reducing sprouting of tubers with 10 – 100 %. Sodium hypochlorite and MennoClean were selected for further studies. Treatments of inoculated tubers with these disinfectants prevented developing of soft rot symptoms on tubers when subjected to favourable rotting conditions. In replicated greenhouse experiments, inoculated tubers treated with sodium hypochlorite and MennoClean reduced the blackleg disease incidences from 50 % to 0 % and to 5 %, respectively, and symptomless infection of potato stems from 93 % to 0 % and to 5 %, respectively. A combination of both compounds was highly phytotoxic. The potential use of sodium hypochlorite and MennoClean in an integrated management strategy for potato blackleg is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alasri, A., Roques, C., Michel, G., Cabassud, C., & Aptel, P. (1992). Bactericidal properties of peracetic acid and hydrogen peroxide, alone and in combination, and chlorine and formaldehyde against bacterial water strains. Canadian Journal of Microbiology, 38(7), 635–642.

    Article  PubMed  CAS  Google Scholar 

  • Almeida, A. A. P., Farah, A., Silva, D. A. M., Nunan, E. A., & Glória, M. B. A. (2006). Antibacterial activity of coffee extracts and selected coffee chemical compounds against Enterobacteria. Journal of Agricultural and Food Chemistry, 54(23), 8738–8743.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, B. M., Rasch, M., Hochlin, K., Jensen, F. H., Wismar, P., & Fredriksen, J. E. (2006). Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. Journal of Hospital Infection, 62(2), 149–155.

    Article  PubMed  CAS  Google Scholar 

  • Bartz, J. A. (1999). Suppression of bacterial soft rot in potato tubers by application of kasugamycin. American Journal of Potato Research, 76(3), 127–136.

    Article  CAS  Google Scholar 

  • Bartz, J. A., & Kelman, A. (1984). Inoculation of potato tubers with Erwinia carotovora during simulated commercial washing and fluming practices. American Potato Journal, 61(8), 495–507.

    Article  Google Scholar 

  • Bartz, J. A., & Kelman, A. (1986). Reducing the potential for bacterial soft rot in potato tubers by chemical treatments and drying. American Potato Journal, 63(9), 481–493.

    Article  Google Scholar 

  • Bloomfield, S. F., Arthur, M., Van Klingeren, B., Pullen, W., Holah, J. T., & Elton, R. (1994). An evaluation of the repeatability and reproducibility of a surface test for the activity of disinfectants. Journal of Applied Microbiology, 76(1), 86–94.

    Article  CAS  Google Scholar 

  • Bonde, R., & de Souza, P. (1954). Studies on the control of potato bacterial seed-piece decay and blackleg with antibiotics. American Potato Journal, 31(10), 311–316.

    Article  CAS  Google Scholar 

  • Buck, J. W., van Iersel, M. W., Oetting, R. D., & Hung, Y. C. (2003). Evaluation of acidic electrolyzed water for phytotoxic symptoms on foliage and flowers of bedding plants. Crop Protection, 22(1), 73–77.

    Article  Google Scholar 

  • Celar, F., Valic, N., Kosmelj, K., & Gril, T. (2007). Evaluating efficacy, corrosivity and phytotoxicity of some disinfectants against Erwinia amylovora (Burill) Winslow et al. using a new statistical measure. Journal of Plant Diseases and Protection, 114, 49–53.

    CAS  Google Scholar 

  • Czajkowski, R., Grabe, G. J., & van der Wolf, J. M. (2009). Distribution of Dickeya spp. and Pectobacterium carotovorum subsp. carotovorum in naturally infected seed potatoes. European Journal of Plant Pathology, 125(2), 263–275.

    Article  Google Scholar 

  • Czajkowski, R., de Boer, W. J., van Veen, J. A., & van Der Wolf, J. M. (2010). Downward vascular translocation of a green fluorescent protein-tagged strain of Dickeya sp. (biovar 3) from stem and leaf inoculation sites on potato. Phytopathology, 100(11), 1128–1137.

    Article  PubMed  Google Scholar 

  • Czajkowski, R., de Boer, W. J., Velvis, H., & van Der Wolf, J. M. (2010). Systemic colonization of potato plants by a soilborne, green fluorescent protein-tagged strain of Dickeya sp. biovar 3. Phytopathology, 100(2), 134–142.

    Article  PubMed  CAS  Google Scholar 

  • Czajkowski, R., Pérombelon, M. C. M., van Veen, J. A., & van der Wolf, J. M. (2012). Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathology, 60, 999–1013.

    Article  Google Scholar 

  • Daglia, M., Cuzzoni, M. T., & Dacarro, C. (1994). Antibacterial activity of coffee: relationship between biological activity and chemical markers. Journal of Agricultural and Food Chemistry, 42(10), 2273–2277.

    Article  CAS  Google Scholar 

  • de Boer, S. H. (2002). Relative incidence of Erwinia carotovora subsp. atroseptica in stolon end and peridermal tissue of potato tubers in Canada. Plant Disease, 86(9), 960–964.

    Article  Google Scholar 

  • Dickson, J. S., Cutter, C. G. N., & Siragusa, G. R. (1994). Antimicrobial effects of trisodium phosphate against bacteria attached to beef tissue. Journal of Food Protection, 57(11), 952–955.

    CAS  Google Scholar 

  • Duarte, V., De Boer, S. H., Ward, L. J., & De Oliveira, A. M. R. (2004). Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. Journal of Applied Microbiology, 96(3), 535–545.

    Article  PubMed  CAS  Google Scholar 

  • El-Mougy, N., El-Gamal, N., & Abdalla, M. (2008). The use of fungicide alternatives for controlling postharvest decay of strawberry and orange fruits. Journal of Plant Protection Research, 48(3), 385–396.

    Article  CAS  Google Scholar 

  • Elphinstone, J. G., & Pérombelon, M. C. M. (1986). Contamination of progeny tubers of potato plants by seed- and leaf-borne Erwinia carotovora. Potato Research, 29(1), 77–93.

    Article  Google Scholar 

  • Friedman, M. (1997). Chemistry, biochemistry, and dietary role of potato polyphenols. A review. Journal of Agricultural and Food Chemistry, 45(5), 1523–1540.

    Article  Google Scholar 

  • Gibson, H., Taylor, J. H., Hall, K. E., & Holah, J. T. (1999). Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. Journal of Applied Microbiology, 87(1), 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Gooskens, V., Ponnighaus, J. M., Clayton, Y., Mkandawire, P., & Sterne, J. A. C. (1994). Treatment of superficial mycoses in the tropics: Whitfield’s oinment versus clotrimazole. International Journal of Dermatology, 33(10), 738–742.

    Article  PubMed  CAS  Google Scholar 

  • Gorman, S., & Scott, E. (2007). Chemical disinfectants, antiseptics and preservatives. In Hugo and Russell’s Pharmaceutical Microbiology (pp. 285–305): Blackwell Science Ltd.

  • Kitis, M. (2004). Disinfection of wastewater with peracetic acid: a review. Environment International, 30(1), 47–55.

    Article  PubMed  CAS  Google Scholar 

  • Le Chevallier, M. W., Cawthon, C. D., & Lee, R. G. (1988). Inactivation of biofilm bacteria. Applied and Environmental Microbiology, 54(10), 2492–2499.

    Google Scholar 

  • Mason, G. F. (1905). The occurrence of benzoic acid naturally in cranberries. Journal of the American Chemical Society, 27(5), 613–614.

    Article  Google Scholar 

  • Miller, W. G., Leveau, J. H. J., & Lindow, S. E. (2000). Improved gfp and inaZ broad-host-range promoter-probe vectors. Molecular Plant-Microbe Interactions, 13(11), 1243–1250.

    Article  PubMed  CAS  Google Scholar 

  • Mills, A. A. S., Platt, H. W., & Hurta, R. A. R. (2006). Sensitivity of Erwinia spp. to salt compounds in vitro and their effect on the development of soft rot in potato tubers in storage. Postharvest Biology and Technology, 41(2), 208–214.

    Article  CAS  Google Scholar 

  • Mizuno, M., Kamei, M., & Tsuchida, H. (1998). Ascorbate peroxidase and catalase cooperate for protection against hydrogen peroxide generated in potato tubers during low-temperature storage. IUBMB Life, 44(4), 717–726.

    Article  CAS  Google Scholar 

  • Mohanapriya, S., Senthilkumar, P., Sivakumar, S., Dineshkumar, M., & Subbhuraam, C. (2006). Effects of copper sulfate and copper nitrate in aquatic medium on the restoration potential and accumulation of copper in stem cuttings of the terrestrial medicinal plant, Portulaca Oleracea: Linn. Environmental Monitoring and Assessment, 121(1), 231–242.

    Article  Google Scholar 

  • Nair, B. (2001). Final report on the safety assessment of benzyl alcohol, benzoic acid, and sodium benzoate. International Journal of Toxicology, 20(Suppl 3), 23–50.

    PubMed  Google Scholar 

  • Payne, R. W., Murray, D. A., Harding, S. A., Baird, D. B., & Soutar, D. M. (2007). GenStat for Windows (9th Edition) Introduction.

  • Perombelon, M. C. M. (1974). The role of the seed tuber in the contamination by Erwinia carotovora of potato crops in Scotland. Potato Research, 17(2), 187–199.

    Article  Google Scholar 

  • Perombelon, M. C. M. (1976). Effects of environmental factors during the growing season on the level of potato tuber contamination by Erwinia carotovora. Journal of Phytopathology, 85(2), 97–116.

    Article  Google Scholar 

  • Perombelon, M. C. M. (1981). Towards an integrated control of potato blackleg. Proceedings Crop Protection in Northern Britain, 1981, 101–109.

    Google Scholar 

  • Perombelon, M. C. M. (2002). Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathology, 51(1), 1–12.

    Article  Google Scholar 

  • Perombelon, M. C. M., & Kelman, A. (1980). Ecology of the soft rot Erwinias. Annual Review of Phytopathology, 18, 361–387.

    Article  Google Scholar 

  • Perombelon, M. C. M., & Lowe, R. (1975). Studies on the initiation of bacterial soft rot in potato tubers. Potato Research, 18(1), 64–82.

    Article  Google Scholar 

  • Perombelon, M. C. M., & Salmond, G. P. C. (1995). Bacterial soft rots. Pathogenesis and Host Specificity in Plant Diseases, 1, 1–20.

    Google Scholar 

  • Perombelon, M. C. M., & van Der Wolf, J. M. (2002). Methods for the detection and quantification of Erwinia carotovora subsp. atroseptica (Pectobacterium carotovorum subsp. atrosepticum) on potatoes: A Laboratory Manual. Scottish Crop Research Institute Annual Report, 10.

  • Perombelon, M. C. M., Burnett, E. M., Melvin, J. S., & Black, S. (1989). Preliminary studies on the control of potato blackleg by a hot water treatment of seed tubers. Vascular Wilt Diseases of Plants: Basic Studies and Control, 557–566.

  • Pitman, A. R., Harrow, S. A., & Visnovsky, S. B. (2010). Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. European Journal of Plant Pathology, 126(3), 423–435.

    Article  Google Scholar 

  • Rossoni, E. M. M., & Gaylarde, C. C. (2000). Comparison of sodium hypochlorite and peracetic acid as sanitising agents for stainless steel food processing surfaces using epifluorescence microscopy. International Journal of Food Microbiology, 61(1), 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Samson, R., Legendre, J. B., Christen, R., Fischer-Le Saux, M., Achouak, W., & Gardan, L. (2005). Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 55(4), 1415–1427.

    Article  PubMed  CAS  Google Scholar 

  • Sapers, G. M., & Sites, J. E. (2003). Efficacy of 1 % hydrogen peroxide wash in decontaminating apples and cantaloupe melons. Journal of Food Science, 68(5), 1793–1797.

    Article  CAS  Google Scholar 

  • Sławiak, M., van Beckhoven, J. R. C. M., Speksnijder, A. G. C. L., Czajkowski, R., Grabe, G., & van der Wolf, J. M. (2009). Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. European Journal of Plant Pathology, 125(2), 245–261.

    Article  Google Scholar 

  • Spychalla, J. P., & Desborough, S. L. (1990). Superoxide dismutase, catalase, and. alpha. -tocopherol content of stored potato tubers (Solanum tuberosum L.). Plant Physiology, 94(3), 1214–1218.

    Article  PubMed  CAS  Google Scholar 

  • Swartz, J. H., & Medrek, T. F. (1968). Antifungal properties of cranberry juice. Applied Microbiology, 16(10), 1524–1527.

    PubMed  CAS  Google Scholar 

  • Tatnall, F. M., Leigh, I. M., & Gibson, J. R. (1990). Comparative study of antiseptic toxicity on basal keratinocytes, transformed human keratinocytes and fibroblasts. Skin Pharmacology and Physiology, 3, 157–163.

    Article  CAS  Google Scholar 

  • Toth, I. K., van der Wolf, J. M., Saddler, G., Lojkowska, E., Hélias, V., Pirhonen, M., et al. (2011). Dickeya species: an emerging problem for potato production in Europe. Plant Pathology, 60(3), 385–399.

    Article  Google Scholar 

  • Tsror, L., Erlich, O., Lebiush, S., Hazanovsky, M., Zig, U., Slawiak, M., et al. (2009). Assessment of recent outbreaks of Dickeya sp. (syn. Erwinia chrysanthemi) slow wilt in potato crops in Israel. European Journal of Plant Pathology, 123(3), 311–320.

    Article  Google Scholar 

  • Vines, J. R. L., Jenkins, P. D., Foyer, C. H., French, M. S., & Scott, I. M. (2003). Physiological effects of peracetic acid on hydroponic tomato plants. Annals of Applied Biology, 143(2), 153–159.

    Article  CAS  Google Scholar 

  • Warth, A. D. (1991). Mechanism of action of benzoic acid on Zygosaccharomyces bailii: effects on glycolytic metabolite levels, energy production, and intracellular pH. Applied and Environmental Microbiology, 57(12), 3410–3414.

    PubMed  CAS  Google Scholar 

  • Wyatt, G. M., & Lund, B. M. (1981). The effect of antibacterial products on bacterial soft rot of potatoes. Potato Research, 24(3), 315–329.

    Article  CAS  Google Scholar 

  • Yaganza, E. S., Arul, J., Tweddell, R. J., & Charles, M. T. (2011). Postharvest application of organic and inorganic salts to control potato (Solanum tuberosum L.) storage soft rot: a physico-chemical basis. Acta Horticulturae, 945, 435–439.

    Google Scholar 

  • Yahya, M. T., Landeen, L. K., Messina, M. C., Kutz, S. M., Schulze, R., & Gerba, C. P. (1990). Disinfection of bacteria in water systems by using electrolytically generated copper:silver and reduced levels of free chlorine. Canadian Journal of Microbiology, 36(2), 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Zhuang, R. Y., & Beuchat, L. R. (1996). Effectiveness of trisodium phosphate for killing Salmonella montevideo on tomatoes. Letters in Applied Microbiology, 22(2), 97–100.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was financed by STW Foundation (Technologiestichting STW, The Netherlands) via grant no. 10306 “Curing seed potato from blackleg causing bacteria”. We thank Dr M.C.M. Perombelon (Dundee, Scotland, UK) for his valuable comments on the manuscript and his editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. van der Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czajkowski, R., de Boer, W.J. & van der Wolf, J.M. Chemical disinfectants can reduce potato blackleg caused by ‘Dickeya solani’. Eur J Plant Pathol 136, 419–432 (2013). https://doi.org/10.1007/s10658-013-0177-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0177-8

Keywords

Navigation