Skip to main content

Advertisement

Log in

Impacts of climate change on plant diseases—opinions and trends

European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases. This overview addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alexander, J., & Lee, C. A. (2010). Lessons learned from a decade of Sudden Oak Death in California: evaluating local management. Environmental Management, 46, 315–328. doi:10.1007/s00267-010-9512-4.

    Article  PubMed  Google Scholar 

  • Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–544. doi:10.1016/j.tree.2004.07.021.

    Article  Google Scholar 

  • Araújo, M. B., Rozenfeld, A., Rahbek, C., & Marquet, P. A. (2011). Using species co-occurrence networks to assess the impacts of climate change. Ecography, 34, 897–908. doi:10.1111/j.1600-0587.2011.06919.x.

    Article  Google Scholar 

  • Archie, E. A., Luikart, G., & Ezenwa, V. O. (2008). Infecting epidemiology with genetics: a new frontier in disease ecology. Trends in Ecology & Evolution, 24, 21–30. doi:10.1016/j.tree.2008.08.008.

    Article  Google Scholar 

  • Ayres, M. P., & Lombardero, M. J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment, 262, 263–286. doi:10.1016/S0048-9697(00)00528-3.

    Article  PubMed  CAS  Google Scholar 

  • Baeten, L., De Frenne, P., Verheyen, K., Graae, B. J., & Henry, M. (2010). Forest herbs in the face of global change: a single-species-multiple-threats approach for Anemone nemorosa. Plant Ecology & Evolution, 143, 19–30. doi:10.5091/plecevo.2010.414.

    Article  Google Scholar 

  • Baker, R. H. A., Sansford, C. E., Jarvis, C. H., Cannon, R. J. C., MacLeod, A., & Walters, K. F. A. (2000). The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agriculture, Ecosystems & Environment, 82, 57–71. doi:10.1016/S0167-8809(00)00216-4.

    Article  Google Scholar 

  • Barnes, A. P., Wreford, A., Butterworth, M. H., Semenov, M. A., Moran, D., Evans, N., et al. (2010). Adaptation to increasing severity of phoma stem canker on winter oilseed rape in the UK under climate change. Journal of Agricultural Science, 148, 683–694. doi:10.1017/S002185961000064X.

    Article  Google Scholar 

  • Barrès, B., Halkett, F., Dutech, C., Andrieux, A., Pinon, J., & Frey, P. (2008). Genetic structure of the poplar rust fungus Melampsora larici-populina: evidence for isolation by distance in Europe and recent founder effects overseas. Infection, Genetics and Evolution, 8, 577–587. doi:10.1016/j.meegid.2008.04.005.

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner, K., Travadon, R., Bruhn, J., & Bergemann, S. E. (2010). Contrasting patterns of genetic diversity and population structure of Armillaria mellea sensu stricto in the eastern and western United States. Phytopathology, 100, 708–718. doi:10.1094/PHYTO-100-7-0708.

    Article  PubMed  Google Scholar 

  • Bawa, K. S., & Dayanandan, S. (1998). Global climatic change and tropical forest genetic resources. Climatic Change, 39, 473–485. doi:10.1023/A:1005360223639.

    Article  Google Scholar 

  • Bearchell, S. J., Fraaije, B. A., Shaw, M. W., & Fitt, B. D. L. (2005). Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proceedings of the National Academy of Sciences USA, 102, 5438–5442. doi:10.1073/pnas.0501596102.

    Article  CAS  Google Scholar 

  • Beaumont, L. J., Pitman, A., Perkins, S., Zimmermann, N. E., Yoccoz, N. G., & Thuiller, W. (2011). Impacts of climate change on the world’s most exceptional ecoregions. Proceedings of the National Academy of Sciences USA, 108, 2306–2311. doi:10.1073/pnas.1007217108.

    Article  CAS  Google Scholar 

  • Bengtsson, S. B. K., Vasaitis, R., Kirisits, T., Solheim, H., & Stenlid, J. (2012). Population structure of Hymenoscyphus pseudoalbidus and its genetic relationship to Hymenoscyphus albidus. Fungal Ecology, in press doi:10.1016/j.funeco.2011.10.004

  • Bentz, B. J., Régnière, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., et al. (2010). Climate change and bark beetles of the Western United States and Canada: direct and indirect effects. BioScience, 60, 602–613. doi:10.1525/bio.2010.60.8.6.

    Article  Google Scholar 

  • Benvenuti, S. (2009). Potenziale impatto dei cambiamenti climatici nell’evoluzione floristica di fitocenosi spontanee in agroecosistemi mediterranei. Rivista Italiana di Agronomia, S1, 45–67.

    Google Scholar 

  • Bergot, M., Cloppet, E., Pérarnaud, V., Déqué, M., Marçais, B., & Desprez-Loustau, M.-L. (2004). Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Global Change Biology, 10, 1539–1552. doi:10.1111/j.1365-2486.2004.00824.x.

    Article  Google Scholar 

  • Bernier, P. Y., Desjardins, R. L., Karimi-Zindashty, Y., Worth, D., Beaudoin, A., Luo, Y., et al. (2011). Boreal lichen woodlands: a possible negative feedback to climate change in eastern North America. Agricultural and Forest Meteorology, 151, 521–528. doi:10.1016/j.agrformet.2010.12.013.

    Article  Google Scholar 

  • Blankinship, J. C., Niklaus, P. A., & Hungate, B. A. (2011). A meta-analysis of responses of soil biota to global change. Oecologia, 165, 553–565. doi:10.1007/s00442-011-1909-0.

    Article  PubMed  Google Scholar 

  • Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29, 59–107. doi:10.1080/07352681003617285.

    Article  Google Scholar 

  • Bodin, P., & Wiman, B. L. B. (2007). The usefulness of stability concepts in forest management when coping with increasing climate uncertainties. Forest Ecology and Management, 242, 541–552. doi:10.1016/j.foreco.2007.01.066.

    Article  Google Scholar 

  • Boland, G. J., Melzer, M. S., Hopkin, A., Higgins, V., & Nassuth, A. (2004). Climate change and plant diseases in Ontario. Canadian Journal of Plant Pathology, 26, 335–350. doi:10.1080/07060660409507151.

    Article  Google Scholar 

  • Bradford, J. B., & D’Amato, A. W. (2012). Recognizing trade-offs in multi-objective land management. Frontiers in Ecology and the Environment, in press doi:10.1890/110031

  • Bradley, B. A., Blumenthal, D. M., Early, R., Grosholz, E. D., Lawler, J. J., Miller, L. P., et al. (2012). Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the Environment, in press doi:10.1890/110145

  • Brasier, C., & Webber, J. (2010). Sudden larch death. Nature, 466, 824–825. doi:10.1038/466824a.

    Article  PubMed  CAS  Google Scholar 

  • Britton, K. O., White, P., Kramer, A., & Hudler, G. (2010). A new approach to stopping the spread of invasive insects and pathogens: early detection and rapid response via a global network of sentinel plantings. New Zealand Journal of Forestry Science, 40, 109–114.

    Google Scholar 

  • Brosi, G. B., McCulley, R. L., Bush, L. P., Nelson, J. A., Classen, A. T., & Norby, R. J. (2010). Effects of multiple climate change factors on the tall fescue–fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytologist, 189, 797–805. doi:10.1111/j.1469-8137.2010.03532.x.

    Article  PubMed  Google Scholar 

  • Brown, J. K. M., & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–541. doi:10.1126/science.1072678.

    Article  PubMed  CAS  Google Scholar 

  • Brummer, E. C., Barber, W. T., Collier, S. M., Cox, T. S., Johnson, R., Murray, S. C., et al. (2011). Plant breeding for harmony between agriculture and the environment. Frontiers in Ecology and the Environment, 9, 561–568. doi:10.1890/100225.

    Article  Google Scholar 

  • Burdon, J. J., & Thrall, P. H. (2008). Pathogen evolution across the agro-ecological interface: implications for disease management. Evolutionary Applications, 1, 57–65. doi:10.1111/j.1752-4571.2007.00005.x.

    Article  Google Scholar 

  • Burdon, J. J., Thrall, P. H., & Ericson, L. (2006). The current and future dynamics of disease in plant communities. Annual Review of Phytopathology, 44, 19–39. doi:10.1146/annurev.phyto.43.040204.140238.

    Article  PubMed  CAS  Google Scholar 

  • Busby, P. E., & Canham, C. D. (2011). An exotic insect and pathogen disease complex reduces aboveground tree biomass in temperate forests of eastern North America. Canadian Journal of Forest Research, 41, 401–411. doi:10.1139/X10-213.

    Article  Google Scholar 

  • Butterworth, M. H., Semenov, M. A., Barnes, A., Moran, D., West, J. S., & Fitt, B. D. L. (2010). North–South divide: contrasting impacts of climate change on crop yields in Scotland and England. Journal of the Royal Society, Interface, 7, 123–130. doi:10.1098/rsif.2009.0111.

    Article  PubMed  Google Scholar 

  • Calder, J. A., & Kirkpatrick, J. B. (2008). Climate change and other factors influencing the decline of the Tasmanian cider gum (Eucalyptus gunnii). Australian Journal of Botany, 56, 684–692. doi:10.1071/BT08105.

    Article  Google Scholar 

  • Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sánchez, G., & Peñuelas, J. (2011). Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences USA, 108, 1474–1478. doi:10.1073/pnas.1010070108.

    Article  CAS  Google Scholar 

  • Cerri, C. E. P., Sparovek, G., Bernoux, M., Easterling, W. E., Melillo, J. M., & Cerri, C. C. (2007). Tropical agriculture and global warming: impacts and mitigation options. Scientia Agricola, 64, 83–99.

    Article  CAS  Google Scholar 

  • Chadès, I., Martin, T. G., Nicol, S., Burgman, M. A., Possingham, H. P., & Buckley, Y. M. (2011). General rules for managing and surveying networks of pests, diseases, and endangered species. Proceedings of the National Academy of Sciences USA, 108, 8323–8328. doi:10.1073/pnas.1016846108.

    Article  Google Scholar 

  • Chakraborty, S. (2005). Potential impact of climate change on plant-pathogen interactions. Australasian Plant Pathology, 34, 443–448. doi:10.1071/AP05084.

    Article  Google Scholar 

  • Chakraborty, S., & Datta, S. (2003). How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytologist, 159, 733–742. doi:10.1046/j.1469-8137.2003.00842.x.

    Article  CAS  Google Scholar 

  • Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant Pathology, 60, 2–14. doi:10.1111/j.1365-3059.2010.02411.x.

    Article  Google Scholar 

  • Chakraborty, S., Tiedemann, A. V., & Teng, P. S. (2000). Climate change: potential impact on plant diseases. Environmental Pollution, 108, 317–326. doi:10.1016/S0269-7491(99)00210-9.

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty, S., Luck, J., Hollaway, G., Freeman, A., Norton, R., Garrett, K. A., et al. (2008). Impacts of global change on diseases of agricultural crops and forest trees. CAB Reviews, 3, 054. doi:10.1079/PAVSNNR20083054.

    Google Scholar 

  • Chakraborty, S., Luck, J., Hollaway, G., Fitzgerald, G., & White, N. (2011). Rust-proofing wheat for a changing climate. Euphytica, 179, 19–32. doi:10.1007/s10681-010-0324-7.

    Article  Google Scholar 

  • Chimera, C. G., Buddenhagen, C. E., & Clifford, P. M. (2010). Biofuels: the risks and dangers of introducing invasive species. Biofuels, 1, 785–796. doi:10.4155/bfs.10.47.

    Article  CAS  Google Scholar 

  • Chytrý, M., Wild, J., Pyšek, P., Jarošík, V., Dendoncker, N., Reginster, I., et al. (2012). Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Global Ecology and Biogeography, 21, 75–87. doi:10.1111/j.1466-8238.2010.00573.x.

    Article  Google Scholar 

  • Ciscar, J.-C., Iglesias, A., Feyen, L., Szabó, L., Van Regemorter, D., Amelung, B., et al. (2011). Physical and economic consequences of climate change in Europe. Proceedings of the National Academy of Sciences USA, 108, 2678–2683. doi:10.1073/pnas.1011612108.

    Article  CAS  Google Scholar 

  • Clough, Y., Barkmann, J., Juhrbandt, J., Kessler, M., Wanger, T. C., Anshary, A., et al. (2011). Combining high biodiversity with high yields in tropical agroforests. Proceedings of the National Academy of Sciences USA, 108, 8311–8316. doi:10.1073/pnas.1016799108.

    Article  CAS  Google Scholar 

  • Coakley, S. M. (1995). Biospheric change - will it matter in plant pathology. Canadian Journal of Plant Pathology, 17, 147–153.

    Article  Google Scholar 

  • Coakley, S. M., Scherm, H., & Chakraborty, S. (1999). Climate change and plant disease management. Annual Review of Phytopathology, 37, 399–426. doi:10.1146/annurev.phyto.37.1.399.

    Article  PubMed  CAS  Google Scholar 

  • Cobb, R. C., Chan, M. N., Meentemeyer, R. K., & Rizzo, D. M. (2012). Common factors drive disease and coarse woody debris dynamics in forests impacted by Sudden Oak Death. Ecosystems, in press doi:10.1007/s10021-011-9506-y

  • Compant, S., van der Heijden, M. G. A., & Sessitsch, A. (2010). Climate change effects in beneficial plant-microorganism interactions. FEMS Microbiology Ecology, 73, 197–214. doi:10.1111/j.1574-6941.2010.00900.x.

    PubMed  CAS  Google Scholar 

  • Crall, A. W., Newman, G. J., Jarnevich, C. S., Stohlgren, T. J., Waller, D. M., & Graham, J. (2010). Improving and integrating data on invasive species collected by citizen scientists. Biological Invasions, 12, 3914–3928. doi:10.1007/s10530-010-9740-9.

    Article  Google Scholar 

  • Crowder, D. W., Northfield, T. D., Strand, M. R., & Snyder, W. E. (2010). Organic agriculture promotes evenness and natural pest control. Nature, 466, 109–112. doi:10.1038/nature09183.

    Article  PubMed  CAS  Google Scholar 

  • Dale, V., Archer, S., Chang, M., & Ojima, D. (2005). Ecological impacts and mitigation strategies for rural land management. Ecological Applications, 15, 1879–1892. doi:10.1890/03-5330.

    Article  Google Scholar 

  • Dale, A. L., Lewis, K. J., & Murray, B. W. (2011). Sexual reproduction and gene flow in the pine pathogen Dothistroma septosporum in British Columbia. Phytopathology, 101, 68–76. doi:10.1094/PHYTO-04-10-0121.

    Article  PubMed  CAS  Google Scholar 

  • Danon, L., Ford, A. P., House, T., Jewell, C. P., Keeling, M. J., Roberts, G. O., et al. (2011). Networks and the epidemiology of infectious disease. Interdisciplinary Perspectives on Infectious Diseases, 2011, 284909. doi:10.1155/2011/284909.

    Article  PubMed  Google Scholar 

  • Davies, L., Bell, J. N. B., Bone, J., Head, M., Hill, L., Howard, C., et al. (2011). Open Air Laboratories (OPAL): a community-driven research programme. Environmental Pollution, 159, 2203–2210. doi:10.1016/j.envpol.2011.02.053.

    Article  PubMed  CAS  Google Scholar 

  • De Simone, D., D’Amico, L., Bressanin, D., Motta, E., & Annesi, T. (2011). Molecular characterization of Inonotus rickii/Ptychogaster cubensis isolates from different geographic provenances. Mycological Progress, 10, 301–306. doi:10.1007/s11557-010-0702-5.

    Article  Google Scholar 

  • Dehnen-Schmutz, K., Holdenrieder, O., Jeger, M. J., & Pautasso, M. (2010). Structural change in the international horticultural industry: some implications for plant health. Scientia Horticulturae, 125, 1–15. doi:10.1016/j.scienta.2010.02.017.

    Article  Google Scholar 

  • Deslippe, J. R., Hartmann, M., Mohn, W. W., & Simard, S. W. (2010). Long-term experimental manipulation of climate alters the ectomycorrhizal community of Betula nana in Arctic tundra. Global Change Biology, 17, 1625–1636. doi:10.1111/j.1365-2486.2010.02318.x.

    Article  Google Scholar 

  • Desprez-Loustau, M. L., Marçais, B., Nageleisen, L.-M., Piou, D., & Vannini, A. (2006). Interactive effects of drought and pathogens in forest trees. Annals of Forest Science, 63, 597–612. doi:10.1051/forest:2006040.

    Article  Google Scholar 

  • Desprez-Loustau, M. L., Robin, C., Buee, M., Courtecuisse, R., Garbaye, R., Suffert, F., et al. (2007a). The fungal dimension of biological invasions. Trends in Ecology & Evolution, 22, 472–480. doi:10.1016/j.tree.2007.04.005.

    Article  Google Scholar 

  • Desprez-Loustau, M. L., Robin, C., Reynaud, G., Deque, M., Badeau, V., Piou, D., et al. (2007b). Simulating the effects of a climate-change scenario on the geographical range and activity of forest-pathogenic fungi. Canadian Journal of Plant Pathology, 29, 101–120.

    Article  Google Scholar 

  • Dillon, M. E., Wang, G., & Huey, R. B. (2010). Global metabolic impacts of recent climate warming. Nature, 467, 704–707. doi:10.1038/nature09407.

    Article  PubMed  CAS  Google Scholar 

  • Dobson, A. (2009). Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology, 90, 920–927. doi:10.1890/08-0736.1.

    Article  PubMed  Google Scholar 

  • Dodd, R. S., Hüberli, D., Mayer, W., Harnik, T. Y., Afzal-Rafii, Z., & Garbelotto, M. (2008). Evidence for the role of synchronicity between host phenology and pathogen activity in the distribution of sudden oak death canker disease. New Phytologist, 179, 505–514. doi:10.1111/j.1469-8137.2008.02450.x.

    Article  PubMed  Google Scholar 

  • Donnelly, A., Caffarra, A., & O’Neill, B. F. (2011). A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. International Journal of Biometeorology, 55, 805–817. doi:10.1007/s00484-011-0426-5.

    Article  PubMed  Google Scholar 

  • Döring, T. F., Knapp, S., Kovacs, G., Murphy, K., & Wolfe, M. S. (2011). Evolutionary plant breeding in cereals - into a new era. Sustainability, 3, 1944–1971. doi:10.3390/su3101944.

    Article  Google Scholar 

  • Dutech, C., Fabreguettes, O., Capdevielle, X., & Robin, C. (2010). Multiple introductions of divergent genetic lineages in an invasive fungal pathogen, Cryphonectria parasitica, in France. Heredity, 105, 220–228. doi:10.1038/hdy.2009.164.

    Article  PubMed  CAS  Google Scholar 

  • Eastburn, D. M., Degennaro, M. M., Delucial, E. H., Demody, O., & McElrone, A. J. (2009). Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biology, 16, 320–330. doi:10.1111/j.1365-2486.2009.01978.x.

    Article  Google Scholar 

  • Eastburn, D. M., McElrone, A. J., & Bilgin, D. D. (2011). Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathology, 60, 54–69. doi:10.1111/j.1365-3059.2010.02402.x.

    Article  Google Scholar 

  • Egli, S. (2011). Mycorrhizal mushroom diversity and productivity - an indicator of forest health? Annals of Forest Science, 68, 81–88. doi:10.1007/s13595-010-0009-3.

    Article  Google Scholar 

  • Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmermann, N. E., Araujo, M. B., et al. (2011). 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 17, 2330–2341. doi:10.1111/j.1365-2486.2010.02393.x.

    Article  Google Scholar 

  • Erlacher, E., & Wang, M. (2011). Regulation (EC) No. 1107/2009 and upcoming challenges for exposure assessment of plant protection products - harmonisation or national modelling approaches? Environmental Pollution, 159, 3357–3363. doi:10.1016/j.envpol.2011.08.036.

    Article  PubMed  CAS  Google Scholar 

  • Ewers, R. M., Scharlemann, J. P. W., Balmford, A. P., & Green, R. E. (2009). Do increases in agricultural yield spare land for nature? Global Change Biology, 15, 1716–1726. doi:10.1111/j.1365-2486.2009.01849x.

    Article  Google Scholar 

  • Fabre, B., Piou, D., Desprez-Loustau, M.-L., & Marçais, B. (2011). Can the emergence of pine Diplodia shoot blight in France be explained by changes in pathogen pressure linked to climate change? Global Change Biology, 17, 3218–3227. doi:10.1111/j.1365-2486.2011.02428.x.

    Article  Google Scholar 

  • Finckh, M. R., & Wolfe, M. S. (1996). The use of biodiversity to restrict plant diseases and some consequences for farmers and society. In L. E. Jackson (Ed.), Ecology in agriculture (pp. 203–237). Dordrecht: Elsevier. doi:10.1016/B978-012378260-1/50008-7.

    Google Scholar 

  • Fischer, J., Zerger, A., Gibbons, P., Stott, J., & Law, B. S. (2010). Tree decline and the future of Australian farmland biodiversity. Proceedings of the National Academy of Sciences USA, 107, 19597–19602. doi:10.1073/pnas.1008476107.

    Article  CAS  Google Scholar 

  • Fischer, A. R. H., Tobi, H., & Ronteltap, A. (2011). When natural met social: a review of collaboration between the natural and social sciences. Interdisciplinary Science Reviews, 36, 341–358. doi:10.1179/030801811X13160755918688.

    Article  Google Scholar 

  • Fitt, G. P. (2011). Critical issues in pest management for a future with sustainable biofuel cropping. Current Opinion in Environmental Sustainability, 3, 71–74. doi:10.1016/j.cosust.2010.11.008.

    Article  Google Scholar 

  • Fitt, B. D. L., Fraaije, B. A., Chandramohan, P., & Shaw, M. W. (2011). Impacts of changing air composition on severity of arable crop disease epidemics. Plant Pathology, 60, 44–53. doi:10.1111/j.1365-3059.2010.02413.x.

    Article  Google Scholar 

  • Fitter, A. (2012). Why plant science matters. New Phytologist, 193, 1–2. doi:10.1111/j.1469-8137.2011.03995.x.

    Article  PubMed  Google Scholar 

  • Fleischmann, F., Raidl, S., & Osswald, W. F. (2010). Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Environmental Pollution, 158, 1051–1060. doi:10.1016/j.envpol.2009.10.004.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, J., Franz, D., & LeClerc, E. J. (2009). Healthy plants: necessary for a balanced ‘One Health’ concept. Veterinaria Italiana, 45, 79–95. http://www.izs.it/vet_italiana/2009/45_1/79.pdf

    Google Scholar 

  • Flood, J. (2010). The importance of plant health to food security. Food Security, 2, 215–231. doi:10.1007/s12571-010-0072-5.

    Article  Google Scholar 

  • French, S., Levy-Booth, D., Samarajeewa, A., Shannon, K. E., Smith, J., & Trevors, J. T. (2009). Elevated temperatures and carbon dioxide concentrations: effects on selected microbial activities in temperate agricultural soils. World Journal of Microbiology and Biotechnology, 25, 1887–1900. doi:10.1007/s11274-009-0107-2.

    Article  CAS  Google Scholar 

  • Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems & Environment, 97, 1–20. doi:10.1016/S0167-8809(03)00125-7.

    Article  CAS  Google Scholar 

  • Fuhrer, J., Beniston, M., Fischlin, A., Frei, Ch, Goyette, S., Jasper, K., et al. (2006). Climate risks and their impact on agriculture and forests in Switzerland. Climatic Change, 79, 79–102. doi:10.1007/s10584-006-9106-6.

    Article  CAS  Google Scholar 

  • Furstenau, C., Badeck, F. W., Lasch, P., Lexer, M. J., Lindner, M., Mohr, P., et al. (2007). Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. European Journal of Forest Research, 126, 225–239. doi:10.1007/s10342-006-0114-x.

    Article  Google Scholar 

  • Gange, A. C., Gange, E. G., Mohammad, A. B., & Boddy, L. (2011). Host shifts in fungi caused by climate change? Fungal Ecology, 4, 184–190. doi:10.1016/j.funeco.2010.09.004.

    Article  Google Scholar 

  • Ganley, R. J., Watt, M. S., Kriticos, D. J., Hopkins, A. J. M., & Manning, L. K. (2011). Increased risk of pitch canker to Australasia under climate change. Australasian Plant Pathology, 40, 228–237. doi:10.1007/s13313-011-0033-2.

    Article  Google Scholar 

  • Garbelotto, M. (2008). Molecular analysis to study invasions by forest pathogens: examples from Mediterranean ecosystems. Phytopathologia Mediterranea, 47, 183–203.

    CAS  Google Scholar 

  • Garbelotto, M., & Pautasso, M. (2012). Impacts of exotic forest pathogens on Mediterranean ecosystems: four case studies European Journal of Plant Pathology, in press doi:10.1007/s10658-011-9928-6

  • Garbelotto, M., Linzer, L., Nicolotti, G., & Gonthier, P. (2010). Comparing the influences of ecological and evolutionary factors on the successful invasion of a fungal forest pathogen. Biological Invasions, 12, 943–957. doi:10.1007/s10530-009-9514-4.

    Article  Google Scholar 

  • Garrett, K. A. (2008). Climate change and plant disease risk. In D. A. Relman, M. A. Hamburg, E. R. Choffnes, & A. Mack (Eds.), Global climate change and extreme weather events: understanding the contributions to infectious disease emergence (pp. 143–155). Washington, DC: National Academies Press.

    Google Scholar 

  • Garrett, K. A., & Mundt, C. C. (1999). Epidemiology in mixed host populations. Phytopathology, 89, 984–990. doi:10.1094/PHYTO.1999.89.11.984.

    Article  PubMed  CAS  Google Scholar 

  • Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: genomes to ecosystems. Annual Review of Phytopathology, 44, 489–509. doi:10.1146/annurev.phyto.44.070505.143420.

    Article  PubMed  CAS  Google Scholar 

  • Garrett, K. A., Nita, M., De Wolf, E. D., Gomez, L., & Sparks, A. H. (2009). Plant pathogens as indicators of climate change. In T. Letcher (Ed.), Climate change: observed impacts on planet Earth (pp. 425–437). Dordrecht: Elsevier.

    Google Scholar 

  • Garrett, K. A., Forbes, G. A., Savary, S., Skelsey, P., Sparks, A. H., Valdivia, C., et al. (2011). Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathology, 60, 15–30. doi:10.1111/j.1365-3059.2010.02409.x.

    Article  Google Scholar 

  • Geyer, J., Kiefer, I., Kreft, S., Chavez, V., Salafsky, N., Jeltsch, F., et al. (2011). Classification of climate-change-induced stresses on biological diversity. Conservation Biology, 25, 708–715. doi:10.1111/j.1523-1739.2011.01676.x.

    Article  PubMed  Google Scholar 

  • Ghini, R., Hamada, E., & Bettiol, W. (2008). Climate change and plant diseases. Scientia Agricola, 65, 98–107. doi:10.1590/S0103-90162008000700015.

    Article  Google Scholar 

  • Ghini, R., Bettiol, W., & Hamada, E. (2011a). Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathology, 60, 122–132. doi:10.1111/j.1365-3059.2010.02403.x.

    Article  Google Scholar 

  • Ghini, R., Hamada, E., Pedro Junior, M. J., & Goncalves, R. Rd. V. (2011b). Incubation period of Hemileia vastatrix in coffee plants in Brazil simulated under climate change. Summa Phytopathologica, 37, 85–93. doi:10.1590/S0100-54052011000200001.

    Article  Google Scholar 

  • Golding, J., Güsewell, S., Kreft, H., Kuzevanov, V. Y., Lehvävirta, S., Parmentier, I., et al. (2010). Species-richness patterns of the living collections of the world’s botanic gardens: a matter of socio-economics? Annals of Botany, 105, 689–696. doi:10.1093/aob/mcq043.

    Article  PubMed  Google Scholar 

  • Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. I. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60, 2827–2838. doi:10.1093/jxb/erp080.

    Article  PubMed  CAS  Google Scholar 

  • Gross, A., Grünig, C. R., Queloz, V., & Holdenrieder, O. (2012). A molecular toolkit for population genetic investigations of the ash dieback pathogen Hymenoscyphus pseudoalbidus. Forest Pathology, in press doi:10.1111/j.1439-0329.2011.00751.x

  • Grulke, N. E. (2011). The nexus of host and pathogen phenology: understanding the disease triangle with climate change. New Phytologist, 189, 8–11. doi:10.1111/j.1469-8137.2010.03568.x.

    Article  PubMed  Google Scholar 

  • Gurr, S., Samalova, M., & Fisher, M. (2011). The rise and rise of emerging infectious fungi challenges food security and ecosystem health. Fungal Biology Reviews, 25, 181–188. doi:10.1016/j.fbr.2011.10.004.

    Article  Google Scholar 

  • Hakala, K., Hannukkala, A. O., Huusela-Veistola, E., Jalli, M., & Peltonen-Sainio, P. (2011). Pests and diseases in a changing climate: a major challenge for Finnish crop production. Agricultural and Food Science, 20, 3–14. doi:10.2137/145960611795163042.

    Article  Google Scholar 

  • Hannukkala, A. O. (2011). Examples of alien pathogens in Finnish potato production - their introduction, establishment and consequences. Agricultural and Food Science, 20, 42–61. doi:10.2137/145960611795163024.

    Article  Google Scholar 

  • Hannukkala, A. O., Kaukoranta, T., Lehtinen, A., & Rahkonen, A. (2007). Late-blight epidemics on potato in Finland, 1933–2002; increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathology, 56, 167–176. doi:10.1111/j.1365-3059.2006.01451.x.

    Article  Google Scholar 

  • Haq, M., Taher Mia, M. A., Rabbi, M. F., & Ali, M. A. (2011). Incidence and severity of rice diseases and insect pests in relation to climate change. In R. Lal, M. V. K. Sivakumar, S. M. A. Faiz, A. H. M. M. Rahman, & K. R. Islam (Eds.), Climate change and food security in South Asia (pp. 445–457). Berlin: Springer. doi:10.1007/978-90-481-9516-9_27.

    Google Scholar 

  • Harwood, T. D., Xu, X. M., Pautasso, M., Jeger, M. J., & Shaw, M. (2009). Epidemiological risk assessment using linked network and grid based modelling: Phytophthora ramorum and P. kernoviae in the UK. Ecological Modelling, 220, 3353–3361.

    Article  Google Scholar 

  • Hawkes, C. V., Kivlin, S. N., Rocca, J. D., Huguet, V., Thomsen, M. A., & Suttle, K. B. (2011). Fungal community responses to precipitation. Global Change Biology, 17, 1637–1645. doi:10.1111/j.1365-2486.2010.02327.x.

    Article  Google Scholar 

  • Hegerl, G. C., Hanlon, H., & Beierkuhnlein, C. (2011). Climate science: elusive extremes. Nature Geoscience, 4, 142–143. doi::10.1038/ngeo1090.

    Article  CAS  Google Scholar 

  • Heyder, U., Schaphoff, S., Gerten, D., & Lucht, W. (2011). Risk of severe climate change impact on the terrestrial biosphere. Environmental Research Letters, 6, 034036. doi::10.1088/1748-9326/6/3/034036.

    Article  Google Scholar 

  • Holdenrieder, O., Pautasso, M., Weisberg, P. J., & Lonsdale, D. (2004). Tree diseases and landscape processes: the challenge of landscape pathology. Trends in Ecology & Evolution, 19, 446–452. doi:10.1016/j.tree.2004.06.003.

    Article  Google Scholar 

  • Holdenrieder, O., Pautasso, M., & Weisberg, P. J. (2008). Tree disease management in heterogeneous landscapes. Oral presentation at the 9th International Conference of Plant Pathology (ICPP 9—Health and Safe Food for Everybody), Torino, Italy, 24–29 August 2008.

  • Horan, R. D., & Lupi, F. (2010). The economics of invasive species control and management: the complex road ahead. Resource and Energy Economics, 32, 477–482. doi:10.1016/j.reseneeco.2010.07.001.

    Article  Google Scholar 

  • Ingram, J. S. I., Gregory, P. J., & Izac, A.-M. (2008). The role of agronomic research in climate change and food security policy. Agriculture, Ecosystems and Environment, 126, 4–12. doi:10.1016/j.agee.2008.01.009.

    Article  Google Scholar 

  • Ingwell, L. L., & Preisser, E. L. (2011). Using citizen science programs to identify host resistance in pest-invaded forests. Conservation Biology, 25, 182–188. doi:10.1111/j.1523-1739.2010.01567.x.

    Article  PubMed  Google Scholar 

  • Jacobi, W. R., Crump, A., & Lundquist, J. E. (2011). Dissemination of forest health research information in the Rocky Mountains. Journal of Forestry, 109, 43–49.

    Google Scholar 

  • Jarvis, D. I., Hodgkin, T., Sthapit, B. R., Fadda, C., & Lopez-Noriega, I. (2011). An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Critical Reviews in Plant Science, 30, 125–176. doi:10.1080/07352689.2011.554358.

    Article  Google Scholar 

  • Jeger, M. J., & Pautasso, M. (2008). Plant disease and global change—the importance of long-term data sets. New Phytologist, 177, 8–11. doi:10.1111/j.1469-8137.2007.02312.x.

    Article  PubMed  Google Scholar 

  • Jeger, M. J., Pautasso, M., Holdenrieder, O., & Shaw, M. W. (2007). Modelling disease spread and control in networks: implications for plant sciences. New Phytologist, 174, 279–297. doi:10.1111/j.1469-8137.2007.02028.x.

    Article  PubMed  Google Scholar 

  • Jeger, M., Pautasso, M., & Stack, J. (2011). Climate, globalization and trade: impacts on dispersal and invasion of fungal plant pathogens. In L. A. Olsen, D. A. Relman, E. R. Choffnes, & L. Pray (Eds.), Fungal diseases: an emerging challenge to human, animal and plant health (pp. 273–296). Washington, DC: Institute of Medicine of the National Academies.

    Google Scholar 

  • Jombart, T., Eggo, R. M., Dodd, P. J., & Balloux, F. (2011). Reconstructing disease outbreaks from genetic data: a graph approach. Heredity, 106, 383–390. doi:10.1038/hdy.2010.78.

    Article  PubMed  CAS  Google Scholar 

  • Jones, R. A. C. (2009). Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141, 113–130. doi:10.1016/j.virusres.2008.07.028.

    Article  PubMed  CAS  Google Scholar 

  • Jung, T., Stukely, M. J. C., Hardy, G. E. S. J., White, D., Paap, T., Dunstan, W. A., et al. (2011). Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: evolutionary and ecological implications. Persoonia, 26, 13–39. doi:10.3767/003158511X557577.

    Article  PubMed  CAS  Google Scholar 

  • Juroszek, P., & von Tiedemann, A. (2011). Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathology, 60, 100–112. doi:10.1111/j.1365-3059.2010.02410.x.

    Article  Google Scholar 

  • Keesing, F., Belden, L. K., Daszak, P., Dobson, A., Harvell, C. D., Holt, R. D., et al. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468, 647–652. doi:10.1038/nature09575.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R. P., Drake, J. M., Drew, M. B., & Lodge, D. M. (2011). Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Diversity and Distributions, 17, 93–102. doi:10.1111/j.1472-4642.2010.00696.x.

    Article  Google Scholar 

  • King, J. N., David, A., Noshad, D., & Smith, J. (2010). A review of genetic approaches to the management of blister rust in white pines. Forest Pathology, 40, 292–313. doi:10.1111/j.1439-0329.2010.00659.x.

    Article  Google Scholar 

  • Kjær, E. D., McKinney, L. V., Nielsen, L. R., Hansen, L. N. & Hansen, J. K. (2012). Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evolutionary Applications, in press doi:10.1111/j.1752-4571.2011.00222.x

  • Kliejunas, J. T., Geils, B. W., Glaeser, M. J., Goheen, E. M., Hennon, P., Kim, M.-S., et al. (2008). Climate and forest diseases of Western North America: a literature review. PSW-GTR, USDA FS, p. 44

  • Klopfenstein, N. B., Kim, M.-S., Hanna, J. W., Richardson, B. A., & Lundquist, J. (2009). Approaches to predicting potential impacts of climate change on forest disease: an example with Armillaria root disease. USDA Forest Service, Rocky Mountain Research Station, RMRS-RP-76, pp. 16 http://www.fs.fed.us/rm/pubs/rmrs_rp076.pdf

  • Körner, C. (2003). Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. Philosophical Transactions of the Royal Society London A, 361, 2023–2041. doi:10.1098/rsta.2003.1241.

    Article  Google Scholar 

  • Körner, C., & Basler, D. (2010). Phenology under global warming. Science, 327, 1461–1462. doi:10.1126/science.1186473.

    Article  PubMed  Google Scholar 

  • Kozlov, M. V., & Zvereva, E. L. (2011). A second life for old data: global patterns in pollution ecology revealed from published observational studies. Environmental Pollution, 159, 1067–1075. doi:10.1016/j.envpol.2010.10.028.

    Article  PubMed  CAS  Google Scholar 

  • Kraj, W., Zarek, M., & Kowalski, T. (2012). Genetic variability of Chalara fraxinea, dieback cause of European ash (Fraxinus excelsior L.). Mycological Progress, in press doi:10.1007/s11557-010-0724-z

  • Kůdela, V. (2009). Potential impact of climate change on geographic distribution of plant pathogenic bacteria in Central Europe. Plant Protection Science, 45, S27–S32.

    Google Scholar 

  • Kulakowski, D., Bebi, P., & Rixen, C. (2011). The interacting effects of land use change, climate change and suppression of natural disturbances on landscape forest structure in the Swiss alps. Oikos, 120, 216–225. doi:10.1111/j.1600-0706.2010.18726.x.

    Article  Google Scholar 

  • La Porta, N., Capretti, P., Thomsen, I. M., Kasanen, R., Hietala, A. M., & Von Weissenberg, K. (2008). Forest pathogens with higher damage potential due to climate change in Europe. Canadian Journal of Plant Pathology, 30, 177–195.

    Google Scholar 

  • Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences USA, 108, 3465–3472. doi:10.1073/pnas.1100480108.

    Article  CAS  Google Scholar 

  • Lin, B. B. (2011). Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience, 61, 183–193. doi:10.1525/bio.2011.61.3.4.

    Article  Google Scholar 

  • Logan, J. A., Régnière, J., & Powell, J. A. (2003). Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment, 1, 130–137. doi:10.1890/1540-9295(2003) 001[0130:ATIOGW]2.0.CO;2.

    Article  Google Scholar 

  • Lonsdale, D., & Gibbs, J. N. (1995). Effects of climate change on fungal diseases of trees. In J. E. Frankland, N. Magan, & G. M. Gadd (Eds.), Fungi and environmental change (pp. 1–19). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lonsdale, D., & Gibbs, J. (2002). Effects of climate change on fungal diseases of trees. (In M. Broadmeadow (Ed.) Climate change: impacts on UK forests (pp. 83–97). Forestry Commission Bulletin, Nr. 125.)

  • Lonsdale, D., Pautasso, M., & Holdenrieder, O. (2008). Wood-decaying fungi in the forest: conservation needs and management options. European Journal of Forest Research, 127, 1–22. doi:10.1007/s10342-007-0182-6.

    Article  Google Scholar 

  • Loustau, D., Ogee, J., Dufrene, E., Deque, M., Dupouey, J. L., Badeau, V., et al. (2007). Impacts of climate change on temperate forests and interaction with management. In P. H. Freer-Smith, M. S. J. Broadmeadow, & J. M. Lynch (Eds.), Forestry and climate change (pp. 243–250). Wallingford, UK: CABI.

    Google Scholar 

  • Lovett, G. M., Arthur, M. A., Weathers, K. C., & Griffin, J. M. (2010). Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems, 13, 1188–1200. doi:10.1007/s10021-010-9381-y.

    Article  CAS  Google Scholar 

  • Luck, J., Spackman, M., Freeman, A., Trebicki, P., Griffiths, W., Finlay, K., et al. (2011). Climate change and diseases of food crops. Plant Pathology, 60, 113–121. doi:10.1111/j.1365-3059.2010.02414.x.

    Article  Google Scholar 

  • MacLeod, A., Pautasso, M., Jeger, M. J., & Haines-Young, R. (2010). Evolution of the international regulation of plant pests, plant health and challenges for the future. Food Security, 2, 49–70. doi:10.1007/s12571-010-0054-7.

    Article  Google Scholar 

  • Madgwick, J. W., West, J. S., White, R. P., Semenov, M. A., Townsend, J. A., Turner, J. A., et al. (2011). Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. European Journal of Plant Pathology, 130, 117–131. doi:10.1007/s10658-010-9739-1.

    Article  Google Scholar 

  • Mahmuti, M., West, J. S., Watts, J., Gladders, P., & Fitt, B. D. L. (2009). Controlling crop disease contributes to both food security and climate change mitigation. International Journal of Agricultural Sustainability, 7, 189–202. doi:10.3763/ijas.2009.0476.

    Article  Google Scholar 

  • Mann, M. E., Bradley, R. S., & Hughes, M. K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779–787. doi:10.1038/33859.

    Article  CAS  Google Scholar 

  • Manning, W. J., & von Tiedemann, A. (1995). Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environmental Pollution, 88, 219–245. doi:10.1016/0269-7491(95)91446-R.

    Article  PubMed  CAS  Google Scholar 

  • Marçais, B., & Desprez-Loustau, M. L. (2007). Le réchauffement climatique a-t-il un impact sur les maladies forestières? RenDez-Vous Techniques, 3, 47–52.

    Google Scholar 

  • Marçais, B., Bouhot-Delduc, L., & Le Tacon, F. (2000). Effets possibles des changements globaux sur les micro-organismes symbiotiques et pathogènes et les insectes ravageurs des forêts. Revue Forestière Française, 52, 99–118.

    Article  Google Scholar 

  • Margosian, M. L., Garrett, K. A., Hutchinson, J. M. S., & With, K. A. (2009). Connectivity of the American agricultural landscape: assessing the national risk of crop pest and disease spread. BioScience, 59, 141–151. doi:10.1525/bio.2009.59.2.7.

    Article  Google Scholar 

  • Matesanz, S., Escudero, A., & Valladares, F. (2009). Impact of three global change drivers on a Mediterranean shrub. Ecology, 90, 2609–2621. doi:10.1890/08-1558.1.

    Article  PubMed  Google Scholar 

  • Matesanz, S., Gianoli, E., & Valladares, F. (2010). Global change and the evolution of phenotypic plasticity in plants. Annals of the New York Academy of Sciences, 1206, 35–55. doi:10.1111/j.1749-6632.2010.05704.x.

    Article  PubMed  Google Scholar 

  • Matyssek, R., Wieser, G., Calfapietra, C., de Vries, W., Dizengremel, P., Ernst, D., et al. (2012). Forests under climate change and air pollution: gaps in understanding and future directions for research. Environmental Pollution, 160, 57–65. doi:10.1016/j.envpol.2011.07.007.

    Article  PubMed  CAS  Google Scholar 

  • McDonald-Madden, E., Runge, M. C., Possingham, H. P., & Martin, T. G. (2011). Optimal timing for managed relocation of species faced with climate change. Nature Climate Change, 1, 261–265. doi:10.1038/nclimate1170.

    Article  Google Scholar 

  • McDowell, N. G., Beerling, D. J., Breshears, D. D., Fisher, R. A., Raffa, K. F., & Stitt, M. (2011). The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends in Ecology & Evolution, 26, 523–532. doi:10.1016/j.tree.2011.06.003.

    Article  Google Scholar 

  • McElrone, A. J., Hamilton, J. G., Krafnick, A. J., Aldea, M., Knepp, R. G., & DeLucia, E. H. (2010). Combined effects of elevated CO2 and natural climatic variation on leaf spot diseases of redbud and sweetgum trees. Environmental Pollution, 158, 108–114. doi:10.1016/j.envpol.2009.07.029.

    Article  PubMed  CAS  Google Scholar 

  • McKinney, L. V., Nielsen, L. R., Hansen, J. K., & Kjær, E. D. (2011). Presence of natural genetic resistance in Fraxinus excelsior (Oleraceae) to Chalara fraxinea (Ascomycota): an emerging infectious disease. Heredity, 106, 788–797. doi:10.1038/hdy.2010.119.

    Article  PubMed  CAS  Google Scholar 

  • Médiène, S., Valantin-Morison, M., Sarthou, J.-P., de Tourdonnet, S., Gosme, M., Bertrand, M., et al. (2011). Agroecosystem management and biotic interactions: a review. Agronomy for Sustainable Development, 31, 491–514. doi:10.1007/s13593-011-0009-1.

    Article  Google Scholar 

  • Milad, M., Schaich, H., Bürgi, M., & Konold, W. (2011). Climate change and nature conservation in Central European forests: a review of consequences, concepts and challenges. Forest Ecology and Management, 261, 829–843. doi:10.1016/j.foreco.2010.10.038.

    Article  Google Scholar 

  • Millar, C. I., Stephenson, N. L., & Stephens, S. L. (2007). Climate change and forests of the future: managing in the face of uncertainty. Ecological Applications, 17, 2145–2151. doi:10.1890/06-1715.1.

    Article  PubMed  Google Scholar 

  • Mills, P., Dehnen-Schmutz, K., Ilbery, B., Jeger, M., Jones, G., Little, R., et al. (2011). Integrating natural and social science perspectives on plant disease risk, management and policy formulation. Philosophical Transactions of the Royal Society London B, 366, 2035–2044. doi:10.1098/rstb.2010.0411.

    Article  Google Scholar 

  • Mistretta, P. A. (2002). Managing for forest health. Journal of Forestry, 100, 24–27.

    Google Scholar 

  • Moore, J. L., Rout, T. M., Hauser, C. E., Moro, D., Jones, M., Wilcox, C., et al. (2010). Protecting islands from pest invasion: optimal allocation of biosecurity resources between quarantine and surveillance. Biological Conservation, 143, 1068–1078. doi:10.1016/j.biocon.2010.01.019.

    Article  Google Scholar 

  • Moricca, S., & Ragazzi, A. (2009). Lusus naturae: cambiamenti climatici ed invasioni di parassiti vegetali modificano il territorio agro-forestale. Rivista Italiana di Agronomia, 3, S13–S17.

    Google Scholar 

  • Moslonka-Lefebvre, M., Finley, A., Dorigatti, I., Dehnen-Schmutz, K., Harwood, T., Jeger, M. J., et al. (2011). Networks in plant epidemiology: from genes to landscapes, countries and continents. Phytopathology, 101, 392–403. doi:10.1094/PHYTO-07-10-0192.

    Article  PubMed  Google Scholar 

  • Ndeffo Mbah, M. L., Forster, G. A., Wesseler, J. H., & Gilligan, C. A. (2010). Economically optimal timing for crop disease control under uncertainty: an options approach. Interface, 7, 1421–1428. doi:10.1098/rsif.2010.0056.

    Article  Google Scholar 

  • Newton, A. C., Johnson, S. N., & Gregory, P. J. (2011). Implications of climate change for diseases, crop yields and food security. Euphytica, 179, 3–18. doi:10.1007/s10681-011-0359-4.

    Article  Google Scholar 

  • Norton, G., & Taylor, M. (2010). What pest is that? Recent developments in digital pest diagnostics. Outlooks on Pest Management, 21, 236–238. doi:10.1564/21oct11.

    Article  Google Scholar 

  • O’Halloran, T. L., Law, B. E., Goulden, M. L., Wang, Z., Barr, J. G., Schaaf, C., et al. (2012). Radiative forcing of natural forest disturbances. Global Change Biology, in press doi:10.1111/j.1365-2486.2011.02577.x

  • Ogden, A. E., & Innes, J. (2007). Incorporating climate change adaptation considerations into forest management planning in the boreal forest. International Forestry Review, 9, 713–733. doi:10.1505/ifor.9.3.713.

    Article  Google Scholar 

  • Østergård, H., Finckh, M. R., Fontaine, L., Goldringer, I., Hoad, S. P., Kristensen, K., et al. (2009). Time for a shift in crop production: embracing complexity through diversity at all levels. Journal of the Science of Food and Agriculture, 89, 1439–1445. doi:10.1002/jsfa.3615.

    Article  CAS  Google Scholar 

  • Paajanen, R., Julkunen-Tiitto, R., Nybakken, L., Petrelius, M., Tegelberg, R., Pusenius, J., et al. (2011). Dark-leaved willow (Salix myrsinifolia) is resistant to three-factor (elevated CO2, temperature and UV-B-radiation) climate change. New Phytologist, 190, 161–168. doi:10.1111/j.1469-8137.2010.03583.x.

    Article  CAS  Google Scholar 

  • Paoletti, E., Bytnerowicz, A., Andersen, C., Augustaitis, A., Ferretti, M., Grulke, N., et al. (2007). Impacts of air pollution and climate change on forest ecosystems - emerging research needs. TheScientificWorldJOURNAL, 7, 1–8. doi:10.1100/tsw.2007.52.

    Article  PubMed  CAS  Google Scholar 

  • Parks, C. G., & Bernier, P. (2010). Adaptation of forests and forest management to changing climate with emphasis on forest health: a review of science, policies and practices. Forest Ecology and Management, 259, 657–659. doi:10.1016/S0378-1127(09)00903-7.

    Article  Google Scholar 

  • Paterson, R. R. M., & Lima, N. (2010). How will climate change affect mycotoxins in food? Food Research International, 43, 1902–1914. doi:10.1016/j.foodres.2009.07.010.

    Article  CAS  Google Scholar 

  • Pautasso, M. (2012). Observed impacts of climate change on terrestrial birds in Europe: an overview. Italian Journal of Zoology, in press doi:10.1080/11250003.2011.627381

  • Pautasso, M., Holdenrieder, O., & Stenlid, J. (2005). Susceptibility to fungal pathogens of forests differing in tree diversity. In M. Scherer-Lorenzen, Ch Koerner, & D. Schulze (Eds.), Forest diversity and function (pp. 263–289). Berlin: Springer. doi:10.1007/3-540-26599-6_13.

    Chapter  Google Scholar 

  • Pautasso, M., Dehnen-Schmutz, K., Holdenrieder, O., Pietravalle, S., Salama, N., Jeger, M. J., et al. (2010). Plant health and global change – some implications for landscape management. Biological Reviews, 85, 729–755. doi:10.1111/j.1469-185X.2010.00123.x.

    PubMed  Google Scholar 

  • Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., et al. (2011). A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 1, 467–471. doi:10.1038/nclimate1293.

    Article  Google Scholar 

  • Perkins, L. B., Leger, E. A., & Nowak, R. S. (2011). Invasion triangle: an organizational framework for species invasion. Ecology & Evolution, 1, 610–625. doi:10.1002/ece3.47.

    Article  Google Scholar 

  • Petrokofsky, G., Brown, N. D., Hemery, G. E., Woodward, S., Wilson, E., Weatherall, A., et al. (2010). A participatory process for identifying and prioritizing policy-relevant research questions in natural resource management: a case study from the UK forestry sector. Forestry, 83, 357–367. doi:10.1093/forestry/cpq018.

    Article  Google Scholar 

  • Petter, F., Brunel, S., & Suffert, M. (2010). Pest risk analysis as applied to plant pathogens. In R. N. Strange & M. L. Gullino (Eds.), The role of plant pathology in food safety and food security (pp. 137–150). Berlin: Springer. doi:10.1007/978-1-4020-8932-9_12.

    Google Scholar 

  • Phalan, B., Balmford, A., Green, R. E., & Scharlemann, J. P. W. (2011). Minimising the harm to biodiversity of producing more food globally. Food Policy, 36, S62–S71. doi:10.1016/j.foodpol.2010.11.008.

    Article  Google Scholar 

  • Pinkard, E. A., Battaglia, M., Bruce, J., Leriche, A., & Kriticos, D. J. (2010). Process-based modelling of the severity and impact of foliar pest attack on eucalypt plantation productivity under current and future climates. Forest Ecology and Management, 259, 839–847. doi:10.1016/j.foreco.2009.06.027.

    Article  Google Scholar 

  • Pritchard, S. G. (2011). Soil organisms and global climate change. Plant Pathology, 60, 82–89. doi:10.1111/j.1365-3059.2010.02405.x.

    Article  Google Scholar 

  • Quarles, W. (2007). Global warming means more pests. The IPM Practitioner, 29(9/10), 1–8.

    Google Scholar 

  • Quijas, S., Schmid, B., & Balvanera, P. (2010). Plant diversity enhances provision of ecosystem services: a new synthesis. Basic and Applied Ecology, 11, 582–593. doi:10.1016/j.baae.2010.06.009.

    Article  Google Scholar 

  • Rebaudo, F., & Dangles, O. (2011). Coupled information diffusion–pest dynamics models predict delayed benefits of farmer cooperation in pest management programs. PLoS Computational Biology, 7, e1002222. doi:10.1371/journal.pcbi.1002222.

    Article  PubMed  CAS  Google Scholar 

  • Reganold, J. P., Jackson-Smith, D., Batie, S. S., Harwood, R. R., Kornegay, J. L., Bucks, D., et al. (2011). Transforming U.S. agriculture. Science, 332, 670–671. doi:10.1126/science.1202462.

    Article  PubMed  CAS  Google Scholar 

  • Régnière, J. (2012). Invasive species, climate change and forest health. In T. Schlichter & L. Montes (Eds.), Forests in development: a vital balance (pp. 27–37). Berlin: Springer. doi:10.1007/978-94-007-2576-8_3.

    Google Scholar 

  • Rizzo, D. M., Meentemeyer, R. K., & Garbelotto, M. (2011). The emergence of Phytophthora ramorum in North America and Europe. In L. A. Olsen, D. A. Relman, E. R. Choffnes, & L. Pray (Eds.), Fungal diseases: an emerging challenge to human, animal and plant health (pp. 312–324). Washington, DC: Institute of Medicine of the National Academies.

    Google Scholar 

  • Robinet, C., Van Opstal, N., Baker, R., & Roques, A. (2011). Applying a spread model to identify the entry points from which the pine wood nematode, the vector of pine wilt disease, would spread most rapidly across Europe. Biological Invasions, 13, 2981–2995. doi:10.1007/s10530-011-9983-0.

    Article  Google Scholar 

  • Rohr, J. R., Dobson, A. P., Johnson, P. T. J., Kilpatrick, A. M., Paull, S. H., Raffel, T. R., et al. (2011). Frontiers in climate change–disease research. Trends in Ecology & Evolution, 26, 270–277. doi:10.1016/j.tree.2011.03.002.

    Article  Google Scholar 

  • Rohrs-Richey, J. K., Mulder, C. P. H., Winton, L. M., & Stanosz, G. (2011). Physiological performance of an Alaskan shrub (Alnus fruticosa) in response to disease (Valsa melanodiscus) and water stress. New Phytologist, 189, 295–307. doi:10.1111/j.1469-8137.2010.03472.x.

    Article  PubMed  Google Scholar 

  • Roos, J., Hopkins, R., Kvarnheden, A., & Dixelius, C. (2010). The impact of global warming on plant diseases and insect vectors in Sweden. European Journal of Plant Pathology, 129, 9–19. doi:10.1007/s10658-010-9692-z.

    Article  Google Scholar 

  • Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R., & Chivian, E. (2001). Climate change and extreme weather events. Implications for food production, plant diseases, and pests. Global Change & Human Health, 2, 90–104. doi:10.1023/A:1015086831467.

    Article  Google Scholar 

  • Roy, B. A., Güsewell, S., & Harte, J. (2004). Response of plant pathogens and herbivores to a warming experiment. Ecology, 85, 2570–2581. doi:10.1890/03-0182.

    Article  Google Scholar 

  • Rytkönen, A., Lilja, A., Drenkhan, R., Gaitnieks, T., & Hantula, J. (2011). First record of Chalara fraxinea in Finland and genetic variation among isolates sampled from Åland, mainland Finland, Estonia and Latvia. Forest Pathology, 41, 169–174. doi:10.1111/j.1439-0329.2010.00647.x.

    Article  Google Scholar 

  • Salinari, F., Giosue, S., Tubiello, F. N., Rettori, A., Rossi, V., Spanna, F., et al. (2006). Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Global Change Biology, 12, 1299–1307. doi:10.1111/j.1365-2486.2006.01175.x.

    Article  Google Scholar 

  • Savary, S., Mila, A., Willocquet, L., Esker, P., Carisse, O., & McRoberts, N. (2011a). Risk factors for crop health under global change and agricultural shifts: a framework of analyses using rice in tropical and subtropical Asia as a model. Phytopathology, 101, 696–709. doi:10.1094/PHYTO-07-10-0183.

    Article  PubMed  CAS  Google Scholar 

  • Savary, S., Nelson, A., Sparks, A. H., Willocquet, L., Duveiller, E., Mahuku, G., et al. (2011b). International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Disease, 95, 1204–1216. doi:10.1094/PDIS-04-11-0316.

    Article  Google Scholar 

  • Scherm, H. (2004). Climate change: can we predict the impacts on plant pathology and pest management? Canadian Journal of Plant Pathology, 26, 267–273. doi:10.1080/07060660409507143.

    Article  Google Scholar 

  • Seem, R. C. (2004). Forecasting plant disease in a changing climate: a question of scale. Canadian Journal of Plant Pathology, 26, 274–283. doi:10.1080/07060660409507144.

    Article  Google Scholar 

  • Seidl, R., Fernandes, P. M., Fonseca, T. F., Gillet, F., Jönssong, A. M., Merganičová, K., et al. (2011). Modelling natural disturbances in forest ecosystems: a review. Ecological Modelling, 222, 903–924. doi:10.1016/j.ecolmodel.2010.09.040.

    Article  Google Scholar 

  • Shaw, M.W. (2009). Preparing for changes in plant diseases due to climate change. Plant Protection Science, 45, S3-S10. http://journals.uzpi.cz/uniqueFiles/13961.pdf

  • Shaw, M. W., & Osborne, T. M. (2011). Geographic distribution of plant pathogens in response to climate change. Plant Pathology, 60, 31–43. doi:10.1111/j.1365-3059.2010.02407.x.

    Article  Google Scholar 

  • Siebold, M., & von Tiedemann, A. (2012). Potential effects of global warming on oilseed rape pathogens in Northern Germany. Fungal Ecology, 5, 62–72. doi:10.1016/j.funeco.2011.04.003.

    Article  Google Scholar 

  • Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 8, 779–790. doi:10.1038/nrmicro2439.

    Article  PubMed  CAS  Google Scholar 

  • Skelsey, P., Rossing, W. A. H., Kessel, G. J. T., & van der Werf, W. (2010). Invasion of Phytophthora infestans at the landscape level: how do spatial scale and weather modulate the consequences of spatial heterogeneity in host resistance? Phytopathology, 100, 1146–1161. doi:10.1094/PHYTO-06-09-0148.

    Article  PubMed  Google Scholar 

  • Steingröver, E. G., Geertsema, W., & van Wingerden, W. K. R. E. (2010). Designing agricultural landscapes for natural pest control: a transdisciplinary approach in the Hoeksche Waard (The Netherlands). Landscape Ecology, 25, 825–838. doi:10.1007/s10980-010-9489-7.

    Article  Google Scholar 

  • Stenlid, J., Oliva, J., Boberg, J. B., & Hopkins, A. J. M. (2011). Emerging diseases in European forest ecosystems and responses in society. Forests, 2, 486–504. doi:10.3390/f2020486.

    Article  Google Scholar 

  • Sturrock, R. N., Frankel, S. J., Brown, A. V., Hennon, P. E., Kliejunas, J. T., Lewis, K. E., et al. (2011). Climate change and forest diseases. Plant Pathology, 60, 133–149. doi:10.1111/j.1365-3059.2010.02406.x.

    Article  Google Scholar 

  • Sutherst, R. W., Constable, F., Finlay, K. J., Harrington, R., Luck, J., & Zalucki, M. P. (2011). Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdisciplinary Reviews - Climate Change, 2, 220–237. doi:10.1002/wcc.102.

    Article  Google Scholar 

  • Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C., & Ewert, F. (2012). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, in press doi:10.1016/j.agrformet.2011.09.002

  • Thomas, K. (2010). Climate change and management of cool season grain legume crops. In S. S. Yadav, D. L. McNeil, R. Redden, & S. A. Patil (Eds.), Impact of climate change on diseases of cool season grain legume crops (pp. 99–113). Berlin: Springer. doi:10.1007/978-90-481-3709-1_6.

    Chapter  Google Scholar 

  • Thompson, S., Alvarez-Loayza, P., Terborgh, J., & Katul, G. (2010). The effects of plant pathogens on tree recruitment in the Western Amazon under a projected future climate: a dynamical systems analysis. Journal of Ecology, 98, 1434–1446. doi:10.1111/j.1365-2745.2010.01726.x.

    Article  Google Scholar 

  • Tomback, D. F., & Achuff, P. (2010). Blister rust and western forest biodiversity: ecology, values and outlook for white pines. Forest Pathology, 40, 186–225. doi:10.1111/j.1439-0329.2010.00655.x.

    Article  Google Scholar 

  • Truscott, J. E., & Gilligan, C. A. (2003). Response to a deterministic epidemiological system to a stochastically varying environment. Proceedings of the National Academy of Sciences USA, 100, 9067–9072. doi:10.1073/pnas.1436273100.

    Article  CAS  Google Scholar 

  • Tsui, C. K. M., Roe, A. D., El-Kassaby, Y. A., Rice, A. R., Alamouti, S. M., Sperling, F. A. H., et al. (2012). Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle. Molecular Ecology, 21, 71–86. doi:10.1111/j.1365-294X.2011.05366.x.

    Article  PubMed  Google Scholar 

  • Tubby, K. V., & Webber, J. F. (2010). Pests and diseases threatening urban trees under a changing climate. Forestry, 83, 451–459. doi:10.1093/forestry/cpq027.

    Article  Google Scholar 

  • Tylianakis, J. M., Didham, R. K., Bascompte, J., & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351–1363. doi:10.1111/j.1461-0248.2008.01250.x.

    Article  PubMed  Google Scholar 

  • Venette, R. C. (2009). Implication of global climate change on the distribution and activity of Phytophthora ramorum. In: K. McManus, & K. W. Gottschalk (Eds.) Proceedings 20th U.S. Department of Agriculture interagency research forum on invasive species 2009 (pp. 58–59.) USDA FS, GTR NRS-P-51.

  • Venette, R. C., Kriticos, D. J., Magarey, R. D., Koch, F. H., Baker, R. H. A., Worner, S. P., et al. (2010). Pest risk maps for invasive alien species: a roadmap for improvement. BioScience, 60, 349–362. doi:10.1525/bio.2010.60.5.5.

    Article  Google Scholar 

  • Vettraino, A. M., Brasier, C. M., Brown, A. V., & Vannini, A. (2011). Phytophthora himalsilva sp. nov. an unusually phenotypically variable species from a remote forest in Nepal. Fungal Biology, 115, 275–287. doi:10.1016/j.funbio.2010.12.013.

    Article  PubMed  Google Scholar 

  • Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395. doi:10.1038/416389a.

    Article  PubMed  CAS  Google Scholar 

  • Watt, M. S., Stone, J. K., Hood, I. A., & Palmer, D. J. (2010). Predicting the severity of Swiss needle cast on Douglas-fir under current and future climate in New Zealand. Forest Ecology and Management, 260, 2232–2240. doi:10.1016/j.foreco.2010.09.034.

    Article  Google Scholar 

  • Watt, M. S., Ganley, R. J., Kriticos, D. J., & Manning, L. K. (2011). Dothistroma needle blight and pitch canker: the current and future potential distribution of two important diseases of Pinus species. Canadian Journal of Forest Research, 41, 412–424. doi:10.1139/X10-204.

    Article  Google Scholar 

  • Webber, J. (2010). Pest risk analysis and invasion pathways for plant pathogens. New Zealand Journal of Forestry Science, 40, S45–S56.

    Google Scholar 

  • West, J. S., Holdgate, S., Townsend, J. A., Edwards, S. G., Jennings, P., & Fitt, B. D. L. (2012). Impacts of changing climate and agronomic factors on fusarium ear blight of wheat in the UK. Fungal Ecology, 5, 53–61. doi:10.1016/j.funeco.2011.03.003.

    Article  Google Scholar 

  • Wingfield, M. J., Slippers, B., & Wingfield, B. D. (2010). Novel associations between pathogens, insects and tree species threaten world forests. New Zealand Journal of Forestry Science, 40, 95–103.

    Google Scholar 

  • Witzell, J., Berglund, M., & Rönnberg, J. (2011). Does temperature regime govern the establishment of Heterobasidion annosum in Scandinavia? International Journal of Biometeorology, 55, 275–284. doi:10.1007/s00484-010-0333-1.

    Article  PubMed  Google Scholar 

  • Woods, A. (2011). Is the health of British Columbia’s forests being influenced by climate change? If so, was this predictable? Canadian Journal of Plant Pathology, 33, 117–126. doi:10.1080/07060661.2011.563908.

    Article  Google Scholar 

  • Woods, A. J., Heppner, D., Kope, H. H., Burleigh, J., & Maclauchlan, L. (2010). Forest health and climate change: a British Columbia perspective. The Forestry Chronicle, 86, 412–422.

    Google Scholar 

  • Xu, X. M., Harwood, T. D., Pautasso, M., & Jeger, M. J. (2009). Spatio-temporal analysis of an invasive plant pathogen (Phytophthora ramorum) in England and Wales. Ecography, 32, 504–516. doi:10.1111/j.1600-0587.2008.05597.x.

    Article  Google Scholar 

  • Xu, X. M., Jeffries, P., Pautasso, M., & Jeger, M. J. (2011). Combined use of biocontrol agents to manage plant diseases in theory and practice: a review. Phytopathology, 101, 1024–1031. doi:10.1094/PHYTO-08-10-0216.

    Article  PubMed  CAS  Google Scholar 

  • Yemshanov, D., McKenney, D. W., Pedlar, J. H., Koch, F. H., & Cook, D. (2009). Towards an integrated approach to modelling the risks and impacts of invasive forest species. Environmental Reviews, 17, 163–178. doi:10.1139/A09-007.

    Article  Google Scholar 

  • Yousefpour, R., Jacobsen, J. B., Thorsen, B. J., Meilby, H., Hanewinkel, M., & Oehler, K. (2012) A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change. Annals of Forest Science, in press doi:10.1007/s13595-011-0153-4

  • Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., et al. (2000). Genetic diversity and disease control in rice. Nature, 406, 718–722. doi:10.1038/35021046.

    Article  PubMed  CAS  Google Scholar 

  • Ziska, L. H., & Runion, G. B. (2007). Future weed, pest, and disease problems for plants. In P. C. D. Newton, R. A. Carran, G. R. Edwards, & P. A. Niklaus (Eds.), Agroecosystems in a changing climate (pp. 261–287). Boca Raton: CRC Press.

    Google Scholar 

  • Zocca, A., Zanini, C., Aimi, A., Frigimelica, G., La Porta, N., & Battisti, A. (2008). Spread of plant pathogens and insect vectors at the northern range margin of cypress in Italy. Acta Oecologica, 33, 307–313. doi:10.1016/j.actao.2008.01.004.

    Article  Google Scholar 

  • Zvereva, E. L., & Kozlov, M. V. (2006). Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a meta-analysis. Global Change Biology, 12, 27–41. doi:10.1111/j.1365-2486.2005.01086.x.

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to K. Dehnen-Schmutz, T. Harwood, O. Holdenrieder, A. MacLeod, P. Mills, M. Moslonka-Lefebvre, M. Shaw, J. Webber, M. Wolfe and X. Xu for insights and discussions, and to T. Matoni and anonymous reviewers for helpful comments on a previous draft. This review was partly funded by the Rural Economy and Land Use Programme (RELU), UK, and by the French Foundation for Research on Biodiversity (FRB) and is partly based on a presentation at the Climate Change and Plant Disease Management Conference, University of Evora, Portugal, 10–12 November 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pautasso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pautasso, M., Döring, T.F., Garbelotto, M. et al. Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol 133, 295–313 (2012). https://doi.org/10.1007/s10658-012-9936-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-9936-1

Keywords

Navigation