Skip to main content
Log in

Defining and designing plant architectural ideotypes to control epidemics?

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Ideotypes are a popular concept for plant breeders, who designate as such the ideal combinations of traits in a particular genotype to reach a pre-set production objective within a given socio-economic context. The historical, ‘genetic’ view of ideotypes has been more recently extended to cover the design of plant genotypes for specific cropping systems (the ‘agronomic’ view), or even the ideal combination of parameters, identified from formal or simulation modeling, to a specific agronomic problem (the ‘modelling’ view). These different forms of ideotypes in turn lead to different strategies for breeding plants. This paper will briefly describe, analyse and discuss some applications of these ideotype views, using the specific case of architectural traits of plant and crop canopies to limit the epidemic development of pests and diseases in crops. It is not intended to be an exhaustive and objective review of the existing literature on plant ideotypes, but rather to express as an ‘opinion’ paper the views discussed and elaborated among participants to the EpiArch network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ando, K., Grumet, R., Terpstra, K., Kelly, J.D. (2007). Manipulation of plant architecture to enhance crop disease control. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2 – 26.

  • Bendokas, V., Gelvonauskiene, D., Siksnianas, T., Staniene, G., Siksnianiene, J. B., Gelvonauskis, B., & Stanys, V. (2012). Morphological traits of phytomers and shoots in the first year of growth as markers for predicting apple tree canopy architecture. Plant Breeding, 131, 180–185.

    Article  Google Scholar 

  • Boujut, J. F., & Blanco, E. (2003). Intermediary objects as a means to foster co-operation in engineering design. Computed Supported Cooperative Work, 12, 205–219.

    Article  Google Scholar 

  • Brunel-Muguet, S., Aubertot, J.-N., & Duerr, C. (2011). Simulating the impact of genetic diversity of Medicago truncatula on germination and emergence using a crop emergence model for ideotype breeding. Annals of Botany, 107, 1367–1376.

    Article  PubMed  CAS  Google Scholar 

  • Calonnec, A., Burie, J.B., Langlais, M., Guyader, S., Saint-Jean S., Sache I., Tivoli B. (2012) Impacts of plant growth and architecture on pathogen processes and their consequences for epidemic behavior. European Journal of Plant Pathology (this volume).

  • Casadebaig, P., Quesnel, G., Langlais, M., & Faivre, R. (2012). A generic model to simulate air-borne diseases as a function of crop architecture. PLoS ONE, accepted.

  • Coyne, D. P., Steadman, J. R., & Anderson, F. N. (1974). Effect of modified plant architecture of great Northern dry bean varieties (Phaseolus vulgaris) on white mold severity, and components of yield. Plant Disease Reporter, 58, 379–382.

    CAS  Google Scholar 

  • Dickman, D. I. (1985). The ideotype concept applied to forest trees. In M. G. R. Cannell & J. E. Jackson (Eds.), Attributes of Trees as Crop Plants (pp. 89–101). Hutington: ITE.

    Google Scholar 

  • Dickman, D. I., Gold, M. A., & Flore, J. A. (1994). The ideotype concept and the genetic improvement of tree crops. Plant Breeding Review, 12, 163–193.

    Google Scholar 

  • Didelot, F., Brun, L., & Parisi, L. (2007). Effects of cultivar mixtures on scab control in apple orchards. Plant Pathology, 56, 1014–1022.

    Article  Google Scholar 

  • Donald, C. M. (1968). Breeding for crop ideotypes. Euphytica, 17, 385–403.

    Article  Google Scholar 

  • Ellissèche, D., Pellé, R., Lejeune, B., Andrivon, D., Mathieu, G. (2002). An attempt to define ideotypes of potato varieties designed for adaptation to organic farming. Proceedings Fifteenth Triennial Conference of EAPR, Hamburg, Germany, 14-19.07.2002, p. 105.

    Google Scholar 

  • Finckh, M. R., Gacek, E. S., Goyeau, H., Lannou, C., Merz, U., Mundt, C. C., Munk, L., Nadziak, J., Newton, A. C., de Vallavieille-Pope, C., & Wolfe, M. S. (2000). Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie, 20, 813–837.

    Article  Google Scholar 

  • Freier, B. & Boller, E.F. (2009). Integrated pest management in Europe – history, policy, achievements and implementation. In R. Peshin & A.K. Dhawan (Eds.), Integrated Pest ManagementDissemination and Impact, volume 2 (pp. 435–454). Springer.

  • Hatchuel, A., & Weil, B. (2009). C-K design theory: An advanced formulation. Research in Engineering Design, 19, 181–192.

    Article  Google Scholar 

  • Haverkort, A. J., & Grashoff, C. (2004). IDEOTYPING-POTATO: a modelling approach to genotype performance. In D. K. L. MacKerron & A. J. Haverkort (Eds.), Decision support systems in potato production: bringing models to practice (pp. 198–211). Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  • Karlsson Strese, E. M., Umaerus, M., & Rydberg, I. (1996). Strategy for catch crop development .1. Hypothetical ideotype and screening of species. Acta Agriculturae Scandinavica B – Soil and Plant Science, 46, 106–111.

    Article  Google Scholar 

  • Khush, G. S. (1995). Breaking the yield frontier of rice. GeoJournal, 35, 329–332.

    Article  Google Scholar 

  • Lauri, P. É., & Laurens, F. (2005). Architectural types in apple (Malus X domestica Borkh.). In D. Ramdane (Ed.), Crops: growth, quality and biotechnology (pp. 1300–1314). Helsinki: World Food Limited.

    Google Scholar 

  • Lawless, C., Semenov, M. A., & Jamieson, P. D. (2005). A wheat canopy model linking leaf area and phenology. European Journal of Agronomy, 22, 19–32.

    Article  Google Scholar 

  • Le May, C., Ney, B., Lemarchand, E., Schoeny, A., & Tivoli, B. (2009). Effect of pea plant architecture on the spatio-temporal epidemic development of ascochyta blight (Mycosphaerella pinodes) in the field. Plant Pathology, 58, 332–343.

    Article  Google Scholar 

  • Letort, V., Mahe, P., Cournede, P. H., De Reffye, P., & Courtois, B. (2008). Quantitative genetics and functional-structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Annals of Botany, 101, 1243–1254.

    Article  PubMed  Google Scholar 

  • Milo, R., & Last, R. L. (2012). Achieving diversity in the face of constraints: lessons from metabolism. Science, 336, 1663–1667.

    Article  PubMed  CAS  Google Scholar 

  • Ney, B., Bancal, M.O., Bancal P., Bingham, I.J., Foulkes, J., Gouache, D., Paveley, N. & Smith, J. (2012). Crop architecture and crop tolerance to fungal diseases and insect herbivory. Mechanisms to limit crop losses. European Journal of Plant Pathology. doi:10.1007/s10658-012-0125-z.

  • Parker, S.R., Berry, P.M., Paveley, N.D., van den Bosh, F., Loell, D.J. (2003). A rational basis for the design of wheat ideotypes. The BCPC International CongressCrop Science & Technology, 1101–1106.

  • Qi, R., Ma, Y., Hu, B., de Reffye, P., & Cournede, P.-H. (2010). Optimization of source-sink dynamics in plant growth for ideotype breeding: A case study on maize. Computers and Electronics in Agriculture, 71, 96–105.

    Article  Google Scholar 

  • Quilot-Turion, B., Ould-Sidi, M. M., Kadrani, A., Hilgert, N., Génard, M., & Lescourret, F. (2011). Optimization of parameters of the ‘Virtual Fruit’ model to design peach genotype for sustainable production systems. European Journal of Agronomy, in press. doi:10.1016/j.eja.2011.11.008. in press.

  • Schwartz, H. F., Steadman, J. R., & Coyne, D. P. (1978). Influence of Phaseolus vulgaris blossoming characteristics and canopy structure upon reaction to Sclerotinia sclerotiorum. Phytopathology, 68, 465–470.

    Article  Google Scholar 

  • Simon, S., Lauri, P. É., Brun, L., Defrance, H., & Sauphanor, B. (2006). Does manipulation of fruit-tree architecture affect the development of pests and pathogens? A case study in an organic apple orchard. The Journal of Horticultural Science and Biotechnology, 81, 765–773.

    Google Scholar 

  • Simon, S., Morel, K., Durand, E., Brevalle, G., Girard, T., & Lauri, P. É. (2012). Aphids at crossroads: when branch architecture alters aphid infestation patterns in the apple tree. Trees, 26, 273–282.

    Article  Google Scholar 

  • Suriharn, B., Patanothai, A., Boote, K. J., & Hoogenboom, G. (2011). Designing a peanut ideotype for a target environment using the CSM-CROPGRO-Peanut model. Crop Science, 51, 1887–1902.

    Article  Google Scholar 

  • Sylvester-Bradley, R., Riffkin, P., & O’Leary, G. (2012). Designing resource-efficient ideotypes for new cropping conditions: wheat (Triticum aestivum L.) in the high rainfall zone of southern Australia. Field Crops Research, 125, 69–82.

    Article  Google Scholar 

  • Tillman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

    Article  Google Scholar 

  • Tivoli, B., Calonnec, A., Richard, B., Ney, B., & Andrivon, D. (2012). How do plant architectural traits modify the expression and development of epidemics? Consequences for reducing epidemic progress. European Journal of Plant Pathology. doi:10.1007/s10658-012-0066-6.

  • Van Bueren, E. T. L., Struik, P. C., & Jacobsen, E. (2002). Ecological concepts in organic farming and their consequences for an organic crop ideotype. Netherlands Journal of Agricultural Sciences, 50, 1–26.

    Google Scholar 

  • Vanloqueren, G. & Baret, P.B. (2004). Les pommiers transgéniques résistants à la tavelure. Analyse systémique d’une plante de « seconde génération ». Courrier de lenvironnement de lINRA, 52, 5–21.

    Google Scholar 

  • Vinck, D., & Jeantet, A. (1995). Mediating and commissioning objects in the sociotechnical process of product design: A conceptual approach. In D. MacLean, P. Saviotti, & D. Vinck (Eds.), Management and New Technology: Design, Networks and Strategy (pp. 111–129). Brussels: COST Social Science Series.

    Google Scholar 

  • von Caemmerer, S., Quick, W. P., & Furbank, R. T. (2012). The development of C-4 Rice: current progress and future challenges. Science, 336, 1671–1672.

    Article  Google Scholar 

  • Weiner, J., Andersen, S. B., Wille, W. K.-M., Griepentrog, H. W., & Olsen, J. M. (2010). Evolutionary agroecology: the potential for cooperative, high density, weed-suppressing cereals. Evolutionary Applications, 3, 473–479.

    Article  Google Scholar 

  • Wolfe, M. S. (1985). The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology, 23, 251–273.

    Article  Google Scholar 

  • Zhu, Y. Y., Chen, H. R., Fan, J. H., Wang, Y. Y., Li, Y., Chen, J. B., Fan, J. X., Yang, S. S., Hu, L. P., Leung, H., Mew, T. W., Teng, P. S., Wang, Z. H., & Mundt, C. C. (2000). Genetic diversity and disease control in rice. Nature, 406, 718–722.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Most of the reflections that led to this paper were carried out within the EpiArch network, to which the financial support of the ‘Plant Health and the Environment’ and ‘Environment and Agronomy ‘divisions of INRA is gratefully acknowledged. The experimental and modeling work underlying it was largely supported by the ARCHIDEMIO project (ANR-08-STRA-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Andrivon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrivon, D., Giorgetti, C., Baranger, A. et al. Defining and designing plant architectural ideotypes to control epidemics?. Eur J Plant Pathol 135, 611–617 (2013). https://doi.org/10.1007/s10658-012-0126-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0126-y

Keywords

Navigation