Skip to main content
Log in

A molecular diagnosis method using real-time PCR for quantification and detection of Fusarium oxysporum f. sp. cubense race 4

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The Fusarium genus causes devastating plant diseases worldwide, in which Fusarium oxysporum is the most serious crop pathogen. Disease monitoring is the basis of integrated pest management of any disease. The lack of rapid, accurate, and reliable device to detect and identify plant pathogens is one of the main limitations in integrated disease management. This study describes an efficient and quantifiable diagnosis method for the specific detection of F. oxysporum f. sp. cubense (Foc) race 4 in field-infected banana. With the optimized PCR parameters using the SCAR (sequence characterized amplified region) primers FocSc-1/FocSc-2 and a real-time PCR strategy, the developed method showed high reproducibility and was very sensitive to detect extremely low quantities of Foc genomic DNA (gDNA). We also found that Foc gDNA in severely symptomatic banana pseudostems and leaves were 6946-fold and 26.69-fold more than in those of mild-symptomatic banana, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beckman, C. H. (1990). Host responses to the pathogen. In R. C. Ploetz (Ed.), Fusarium Wilt of Banana (pp. 107–114). St. Paul: APS Press.

    Google Scholar 

  • Bookout, A. L., & Mangelsdorf, D. J. (2003). Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nuclear Receptor Signaling, 1, e012.

    Article  PubMed  Google Scholar 

  • Clercq, D. D., Ceustermans, A., Heyndrickx, M., Coosemans, J., & Ryckeboer, J. (2007). A rapid monitoring assay for the detection of Salmonella spp. and Salmonella Senftenberg strain W775 in composts. Journal of Applied Microbiology, 103, 2102–2112.

    Article  PubMed  Google Scholar 

  • Daniells, J., Davis, D., Peterson, R., & Pegg, K. (1995). Goldfinger: not as resistant to sigatoka/yellow sigatoka as first thought. Infomusa, 4, 6.

    Google Scholar 

  • Demontis, M. A., Cacciola, S. O., Orrù, M., Balmas, V., Chessa, V., Maserti, B. E., Mascia, L., Raudino, F., di San, M., Lio, G., & Migheli, Q. (2008). Development of real-time PCR systems based on SYBR® Green I and TaqMan® technologies for specific quantitative detection of Phoma tracheiphila in infected Citrus. European Journal of Plant Pathology, 120, 339–351.

    Google Scholar 

  • Dias, A. K. K., Aoki, S. M., Garcia, J. F., & Nunes, C. M. (2007). Taenia solium and Taenia saginata: Identification of sequence characterized amplified region (SCAR) markers. Experimental Parasitology, 117, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Dita, M. A., Waalwijk, C., Buddenhagen, I. W., Souza, M. T., Jr., & Kema, G. H. J. (2010). A molecular diagnostic for tropical race 4 of the banana fusarium wilt pathogen. Plant Pathology, 59, 348–357.

    Article  CAS  Google Scholar 

  • FAO (2011). FAO Yearbook (Production). Food and Agriculture Organization of the United Nations.

  • Forsyth, L. M., Smith, L. J., & Aitken, E. A. B. (2006). Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity. Mycological Research, 110, 929–935.

    Article  PubMed  Google Scholar 

  • Fungaro, M. H. P., Vissotto, P. C., Sartori, D., Vilas-Boas, L. A., Furlaneto, M. C., & Taniwaki, M. H. (2004). A molecular method for detection of Aspergillus carbonarius in coffee beans. Current Microbiology, 49, 123–127.

    PubMed  CAS  Google Scholar 

  • Groenewald, S., Van Den Berg, N., Marasas, W. F., & Viljoen, A. (2006). The application of high-throughput AFLP’s in assessing genetic diversity in Fusarium oxysporum f. sp. cubense. Mycological Research, 110, 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, S. C., & Ko, W. H. (2004). Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan. Plant Disease, 88, 580–588.

    Article  Google Scholar 

  • Jurado, M., Vázquez, C., Marín, S., Sanchis, V., & González-Jaéna, M. T. (2006). PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Systematic and Applied Microbiology, 29, 681–689.

    Article  PubMed  CAS  Google Scholar 

  • Klemsdal, S. S., & Elen, O. (2006). Development of a highly sensitive nested-PCR method using a single closed tube for detection of Fusarium culmorum in cereal samples. Letters in Applied Microbiology, 42, 544–548.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y. H., Chang, J. Y., Liu, E. T., Chao, C. P., Huang, J. W., & Chang, P. F. L. (2009). Development of a molecular marker for specific detection of Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology, 123, 353–365.

    Article  CAS  Google Scholar 

  • Lin, Y. H., Chen, K. S., Chang, J. Y., Wan, Y. L., Hsu, C. C., Huang, J. W., & Chang, P. F. L. (2010). Development of the molecular methods for rapid detection and differentiation of Fusarium oxysporum and F. oxysporum f. sp. niveum in Taiwan. New Biotechnology, 27, 409–418.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, M. M., Bertolini, E., Olmos, A., Caruso, P., Gorris, M. T., & Llop, P. (2003). Innovative tools for plant pathogenic viruses and bacteria. International Microbiology, 6, 233–243.

    Article  PubMed  CAS  Google Scholar 

  • Mes, J. J., Weststeijn, E. A., Herlaar, F., Lambalk, J. J. M., Wijbrandi, J., Haring, M. A., & Cornelissen, B. J. C. (1999). Biological and molecular characterization of Fusarium oxysporum f. sp. lycopersici divides race 1 isolates into separate virulence groups. Phytopathology, 89, 156–160.

    Article  PubMed  CAS  Google Scholar 

  • Möller, E. M., Chełkowski, J., & Geiger, H. H. (1999). Species specific PCR assays for the fungal pathogens Fusarium moniliforme and Fusarium subglutinans and their application to diagnose maize ear rot disease. Journal of Phytopathology, 147, 497–508.

    Article  Google Scholar 

  • Moore, N. Y., Bentley, S., Pegg, K. G., & Jones, D. R. (1995). Fusarium wilt of banana. Musa Disease Fact Sheet no. 5. Montpellier: International Network for the Improvement of Banana and Plantain.

    Google Scholar 

  • Nash, S. M., & Snyder, W. C. (1962). Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology, 52, 567–572.

    Google Scholar 

  • Paran, I., & Michelmore, R. W. (1993). Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics, 85, 985–993.

    Article  CAS  Google Scholar 

  • Parry, D. W., & Nicholson, P. (1996). Development of a PCR assay to detect Fusarium poae in wheat. Plant Pathology, 45, 383–391.

    Article  CAS  Google Scholar 

  • Schaad, N. W., Frederick, R. D., Shaw, J., Schneider, W. L., Hickson, R., Petrillo, M. D., & Luster, D. G. (2003). Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annual Review of Phytopathology, 41, 305–324.

    Article  PubMed  CAS  Google Scholar 

  • Schilling, A. G., Möller, E. M., & Geiger, H. H. (1996). Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum, and F. avenaceum. Phytopathology, 86, 515–523.

    Article  CAS  Google Scholar 

  • Smith, S. N. (2007). An overview of ecological and habitat aspects in the genus Fusarium with special emphasis on the soil-borne pathogenic forms. Plant Pathology Bulletin, 16, 97–120.

    Google Scholar 

  • Snyder, W., & Hanson, H. (1940). The species concept in Fusarium. American Journal of Botany, 27, 64–67.

    Article  Google Scholar 

  • Stover, R. H., & Malo, S. E. (1972). The occurrence of Fusarial wilt in normally resistance ‘Dwarf Cavendish” banana. Plant Disease Reporter, 56, 1000–1003.

    Google Scholar 

  • Su, H. J., Chuang, T. Y., & Kong, W. S. (1977). Physiological race of Fusarial wilt fungus attacking Cavendish banana of Taiwan. Special Publication no. 2 (pp. 1–21). Pingtung: Taiwan Banana Research Institute.

    Google Scholar 

  • Su, H. J., Hwang, S. C., & Ko, W. H. (1986). Fusarial wilt of Cavendish bananas in Taiwan. Plant Disease, 70, 814–818.

    Article  Google Scholar 

  • Waite, B. H., & Stover, R. H. (1960). Studies on Fusarium wilt of bananas. VI. Variability and cultivar concept in Fusarium oxysporum f. cubense. Canadian Journal of Botany, 38, 985–994.

    Article  Google Scholar 

  • Ward, E., Foster, S. J., Fraaije, B. A., & McCartney, H. A. (2004). Plant pathogen diagnostics: Immunological and nucleic acids based approaches. Annals of Applied Biology, 145, 1–16.

    Article  CAS  Google Scholar 

  • Wilson, A., Simpson, D., Chandler, E., Jennings, P., & Nicholson, P. (2004). Development of PCR assays for the detection and differentiation of Fusarium sporotrichioides and Fusarium langsethiae. FEMS Microbiology Letters, 233, 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. S., & Otsuki, T. (2004). To spray or not to spray: pesticides, banana exports, and food safety. Food Policy, 29, 131–146.

    Article  Google Scholar 

  • Yergeau, E., Filion, M., Vujanovic, V., & St-Arnaud, M. (2005). A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in asparagus. Journal of Microbiological Methods, 60, 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Yoder, W. T., & Christianson, L. M. (1998). Species-specific primers resolve members of Fusarium section Fusarium taxonomic status of the edible “Quorn” fungus reevaluated. Fungal Genetics and Biology, 23, 68–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs H.-L. Wang (National Kaohsiung Normal University), Y.-S. Lin (National Chung Hsing University, NCHU), W.-H. Hsieh (NCHU), C.-H. Kuo (National Chiayi University), Taitung District Agricultural Research and Extension Station, Agricultural Research Institute and AVRDC-The World Vegetable Center for providing the tested microorganisms. We also thank Miss Y.-L. Wan and Miss. Y.-R. Chen for technical assistance. This research was supported in part by Council of Agriculture, Taiwan, R.O.C. under grant numbers 93AS-1.9.2-BQ-B1(1), 94AS-13.3.2-BQ-B1(6), 96AS-4.1.2-IC-I1(2), 97AS-4.1.2-ICI1(6), 98AS-4.1.1-IC-I1(1), and 99-AS-9.3.1-BQ-B2(6); by National Science Council, Taiwan, R.O.C. under grant numbers 98-2313-B-005-025-MY3, 99-2622-B-005-006-CC2, and 101-2313-B-005-028-MY3; by the Ministry of Education, Taiwan, R.O.C. under the ATU plan; and also by National Chung Hsing University, Taiwan, R.O.C. Dr. Ying-Hong Lin was supported with the postdoctoral fellowships provided by National Science Council, Taiwan, R.O.C. under grant numbers 098-2811-B-005-024, 099-2811-B-005-025, 100-2811-B-005-017, and 101-2811-B-005-011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jenn-Wen Huang or Pi-Fang Linda Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YH., Su, CC., Chao, CP. et al. A molecular diagnosis method using real-time PCR for quantification and detection of Fusarium oxysporum f. sp. cubense race 4. Eur J Plant Pathol 135, 395–405 (2013). https://doi.org/10.1007/s10658-012-0096-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0096-0

Keywords

Navigation