Skip to main content
Log in

Physiological response of Bacillus cereus C1L-induced systemic resistance in lily against Botrytis leaf blight

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bacillus cereus C1L has been demonstrated to induce systemic disease resistance against Botrytis elliptica in lily. The objective of this study was to investigate physiological responses of B. cereus C1L-triggered systemic resistance in lily cv. Star Gazer against B. elliptica. By histological and biochemical analyses, leaves inoculated with B. elliptica displayed cell death, H2O2 accumulation and lignin deposition. As plants were elicited with B. cereus C1L, cell death, H2O2 accumulation and lignin deposition in leaves caused by B. elliptica infection were suppressed, revealing that suppression of oxidative burst might be associated with B. cereus C1L-induced systemic resistance. In reactive oxygen species inhibitors assays, B. elliptica-caused lesion numbers and H2O2 accumulation in lily leaves were significantly reduced as leaves were pretreated with catalase or diphenylene iodonium. Furthermore, the expression of LsGRP1 and LsPsbR in leaves elicited with B. cereus C1L and inoculated with B. elliptica was decreased. The same expression pattern was also observed in leaves pretreated with catalase or diphenylene iodonium and inoculated with B. elliptica. These results suggest that B. cereus C1L-induced systemic resistance may be related to suppression or alleviation of oxidative stress and cell death of lily caused by B. elliptica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

ISR:

induced systemic resistance

CAT:

catalase

DPI:

diphenylene iodonium

dai:

days after inoculation

hpi:

hours post inoculation

References

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal tranduction. Annual Review of Plant Biology, 55, 373–399.

    Article  PubMed  CAS  Google Scholar 

  • Asai, S., & Yoshioka, H. (2009). Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 22, 619–629.

    Article  PubMed  CAS  Google Scholar 

  • Baker, C. J., & Mock, N. M. (1994). An improved method for monitoring cell death in cell suspension and leaf disc assays using evans blue. Plant Cell, Tissue and Organ Culture, 39, 7–12.

    Article  Google Scholar 

  • Baker, C. J., & Orlandi, E. W. (1995). Active oxygen in plant pathogenesis. Annual Review of Phytopathology, 33, 299–321.

    Article  PubMed  CAS  Google Scholar 

  • Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91, 179–194.

    Article  PubMed  CAS  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.

    Article  PubMed  CAS  Google Scholar 

  • Daudi, A., Cheng, Z., O’Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., & Bolwell, G. P. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. The Plant Cell, 24, 275–287.

    Article  PubMed  CAS  Google Scholar 

  • De Vleesschauwer, D., Cornelis, P., & Höfte, M. (2006). Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaprothe grisea but enhances Rhizoctonia solani susceptibility in rice. Molecular Plant-Microbe Interactions, 19, 1406–1419.

    Article  PubMed  Google Scholar 

  • De Vleesschauwer, D., Chernin, L., & Höfte, M. M. (2009). Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biology, 9, 9.

    Article  PubMed  Google Scholar 

  • Doss, R. P., Chastagner, G. A., & Riley, K. L. (1984). Techniques for inoculum production and inoculation of lily leaves with Botrytis elliptica. Plant Disease, 68, 854–856.

    Google Scholar 

  • Edlich, W., Lorenz, G., Lyr, H., Nega, E., & Pommer, E. H. (1989). New aspects on the infection mechanism of Botrytis cinerea Pers. Netherlands Journal of Plant Pathology, 95, 53–62.

    Article  CAS  Google Scholar 

  • Elad, Y. (1992). The use of antioxidants (free radical scavengers) to control grey mould (Botrytis cinerea) and white mould (Sclerotinia sclerotiorum) in various crops. Plant Pathology, 41, 417–426.

    Article  CAS  Google Scholar 

  • Felix, G., Duran, J. D., Volko, S., & Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 18, 265–276.

    Article  PubMed  CAS  Google Scholar 

  • Glazener, J. A. (1982). Accumulation of phenolic compounds in cells and formation of lignin-like polymers in cell walls of young tomato fruits after inoculation with Botrytis cinerea. Physiol. Plant Pathol., 20, 11–25.

    Article  CAS  Google Scholar 

  • Govrin, E. M., & Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10, 751–757.

    Article  PubMed  CAS  Google Scholar 

  • Grace, S. C., & Logan, B. A. (2000). Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 355, 1499–1510.

    Article  PubMed  CAS  Google Scholar 

  • Grant, J. J., & Loake, G. J. (2000). Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiology, 124, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Grellet-Bournonville, C. F., Martinez-Zamora, M. G., Castagnaro, A. P., & Diaz-Ricci, J. C. (2012). Temporal accumulation of salicylic acid activates the defense response against Colletotrichum in strawberry. Plant Physiology and Biochemistry, 54, 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Hou, P. F., & Chen, C. Y. (2003). Early stages of infection of lily leaves by Botrytis elliptica and B. cinerea. Plant Pathol Bull., 12, 103–108.

    Google Scholar 

  • Hsieh, T. F., Huang, J. W., & Hsiang, T. (2001). Light and scanning electron microscopy studies on the infection of oriental lily leaves by Botrytis elliptica. European Journal of Plant Pathology, 107, 571–581.

    Article  Google Scholar 

  • Huang, C. J., Wang, T. K., Chung, S. C., & Chen, C. Y. (2005). Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. Journal of Biochemistry and Molecular Biology, 38, 82–88.

    Article  PubMed  CAS  Google Scholar 

  • Hückelhoven, R. (2007). Cell wall-associated mechanisms of disease resistance and susceptibility. Annual Review of Phytopathology, 45, 101–127.

    Article  PubMed  Google Scholar 

  • Jana, S., & Choudhuri, M. A. (1982). Glycolate metabolism of three submerged aquatic angiosperms during ageing. Aquatic Botany, 12, 345–354.

    Article  CAS  Google Scholar 

  • Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251–275.

    Article  PubMed  CAS  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. H., Huang, C. J., & Chen, C. Y. (2008a). Evidence of induced systemic resistance against Botrytis elliptica in lily. Phytopathology, 98, 830–836.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. H., Huang, C. J., Yang, K. H., & Chen, C. Y. (2008b). Effect of hydrogen peroxide on infection of lily by Botrytis elliptica. Plant Pathology Bulletin, 17, 307–314.

    CAS  Google Scholar 

  • Liu, Y. H., Huang, C. J., & Chen, C. Y. (2010). Identification and transcriptioncal analysis of genes involved in Bacillus cereus-induced systemic resistance in Lilium. Biologia Plantarum, 54, 697–702.

    Article  CAS  Google Scholar 

  • Lu, Y. Y., & Chen, C. Y. (2005). Molecular analysis of lily leaves in response to salicylic acid effective towards protection against Botrytis elliptica. Plant Science, 169, 1–9.

    Article  CAS  Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg, B. J. J., Chin-A-Woeng, T. F. C., & Bloemberg, G. V. (2002). Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek, 81, 373–383.

    Article  PubMed  CAS  Google Scholar 

  • Mansfield, J. W., & Hutson, R. A. (1980). Microscopical studies on fungal development and host responses in broad bean and tulip leaves inoculated with five species of Botrytis. Physiol. Plant Pathol., 17, 131–144.

    Article  Google Scholar 

  • Mehdy, M. C. (1994). Active oxygen species in plant defense against pathogens. Plant Physiology, 105, 467–472.

    PubMed  CAS  Google Scholar 

  • Mengiste, T., Chen, X., Salmeron, J., & Dietrich, R. (2003). The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. The Plant Cell, 15, 2551–2565.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, T. P., Feder, N., & McCully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59, 367–373.

    Google Scholar 

  • Ride, J. P. (1975). Lignification in wounded wheat leaves in response to fungi and its possible role in resistance. Physiol. Plant Pathol., 5, 125–134.

    Article  CAS  Google Scholar 

  • Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic acquired resistance. The Plant Cell, 8, 1809–1819.

  • Thomma, B. P. H. J., Eggermont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P. A., & Broekaert, W. F. (1998). Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 95, 15107–15111.

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 11, 1187–1194.

    Article  CAS  Google Scholar 

  • Tiedemann, A. V. (1997). Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiological and Molecular Plant Pathology, 50, 151–166.

    Article  CAS  Google Scholar 

  • Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141, 373–378.

    Google Scholar 

  • van Baarlen, P., Staats, M., & van Kan, J. A. L. (2004). Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Molecular Plant Pathology, 5, 559–574.

    Article  Google Scholar 

  • van Baarlen, P., Woltering, E. J., Staats, M., & van Kan, J. A. L. (2007). Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Molecular Plant Pathology, 8, 41–54.

    Article  Google Scholar 

  • van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.

    Article  PubMed  Google Scholar 

  • van Loon, L. C., Bakker, P. A. H. M., van Der Heijdt, W. H. W., Wendehenne, D., & Pugin, A. (2008). Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Molecular Plant-Microbe Interactions, 21, 1609–1621.

    Article  PubMed  Google Scholar 

  • Varnier, A.-L., Sanchez, L., Vatsa, P., Boudesocque, L., Garcia-Brugger, A., Rabenoelina, F., Sorokin, A., Renault, J.-H., Kauffmann, S., Pugin, A., Clement, C., Baillieul, F., & Dorey, S. (2009). Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant, Cell & Environment, 32, 178–193.

    Article  CAS  Google Scholar 

  • Verhagen, B. W. M., van Loon, L. C., & Pieterse, C. M. J. (2006). Induced disease resistance signaling in plants. In J. A. Teixeira da Silva (Ed.), Floriculture, ornamental and plant biotechnology (Vol. III, pp. 334–343). UK: Global Science Books Ltd.

    Google Scholar 

  • Verhagen, B. W. M., Trotel-Aziz, P., Couderchet, M., Höfte, M., & Aziz, A. (2010). Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. Journal of Experimental Botany, 61, 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek, P. (1997). Oxidative burst: an early plant response to pathogen infection. Biochemical Journal, 322, 681–692.

    PubMed  CAS  Google Scholar 

  • Yang, H., Zhao, X., Wu, J., Hu, M., & Xia, S. (2011). The benefits of exogenous NO: enhancing Arabidopsis to resist Botrytis cinerea. American Journal of Plant Sciences, 2, 511–519.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Council grants 96-2317-B-002-001 and 97-2317-B-002-001 to C. Y. Chen and by the Aim for Top University Project of National Taiwan University grants 99R40044 and 10R40044 to C. J. Huang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Ying Chen.

Additional information

Chien-Jui Huang and Yi-Hung Liu contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CJ., Liu, YH., Yang, KH. et al. Physiological response of Bacillus cereus C1L-induced systemic resistance in lily against Botrytis leaf blight. Eur J Plant Pathol 134, 1–12 (2012). https://doi.org/10.1007/s10658-012-0013-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0013-6

Keywords

Navigation