Skip to main content
Log in

Estimation of the contribution of biomarkers of different metabolic pathways to risk of type 2 diabetes

  • DIABETES
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The contribution of different biological pathways to the development of type 2 diabetes was quantified in a case-cohort design based on circulating blood biomarkers from participants aged 35–65 years in the EPIC–Potsdam Study. The analytic sample included 613 participants with incident diabetes and 1965 participants without diabetes. The proportion that each biomarker contributed to the risk of diabetes was quantified using effect decomposition method. Summarized risk of each biomarker was estimated by an index based on quintiles of gamma-glutamyltransferase (GGT), HDL-cholesterol, hs-CRP, and adiponectin. Cox proportional hazard regression was used to estimate relative risks adjusted for age, sex, body mass index, waist-circumference, education, sport activity, cycling, occupational activity, smoking, alcohol intake, and consumptions of red meat, coffee and whole grain bread. Adiponectin explained a total of 32.1% (CI = 16.8, 49.1%) of the risk related to index. For the other biomarkers the corresponding proportions were 23.5% (CI = 10.1, 37.8%) by HDL-cholesterol, 21.5% (CI = 11.5, 32.8%) by GGT, and 15.5% (CI = 4.44, 27.3%) by hs-CRP. The results support the hypothesis that the different biological pathways reflected by GGT, HDL-cholesterol, hs-CRP and adiponectin independent from each other contribute to the risk of type 2 diabetes. Of these pathways the highest contribution was observed for adiponectin which contributed one-third to the risk and that equal proportion was contributed by GGT and HDL-cholesterol, although the contribution of inflammation was lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sattar N, Wannamethee SG, Forouhi NG. Novel biochemical risk factors for type 2 diabetes: pathogenic insights or prediction possibilities? Diabetologia. 2008;51:926–40.

    Article  CAS  PubMed  Google Scholar 

  2. Ford ES, Schulze MB, Bergmann MM, Thamer C, Joost HG, Boeing H. Liver enzymes and incident diabetes: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes Care. 2008;31:1138–43.

    Article  PubMed  Google Scholar 

  3. Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin Levels and Risk of Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA. 2009;302:179–88.

    Article  CAS  PubMed  Google Scholar 

  4. Schulze MB, Weikert C, Pischon T, Bergmann MM, Al-Hasani H, Schleicher E, et al. Use of Multiple Metabolic and Genetic Markers to Improve the Prediction of Type 2 Diabetes: the EPIC-Potsdam Study. Diabetes Care. 2009;32:2116–9.

    Article  PubMed  Google Scholar 

  5. Schmidt MI, Duncan BB, Bang H, Pankow JS, Ballantyne CM, Golden SH, et al. Identifying individuals at high risk for diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care. 2005;28:2013–8.

    Article  PubMed  Google Scholar 

  6. Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D’Agostino RB Sr. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med. 2007;167:1068–74.

    Article  PubMed  Google Scholar 

  7. Chen C, Wang H, Snapinn SM. Proportion of treatment effect (PTE) explained by a surrogate marker. Stat Med. 2003;22:3449–59.

    Article  PubMed  Google Scholar 

  8. Drogan D, Weikert C, Dierkes J, Klipstein-Grobusch K, Buijsse B, Möhlig M, et al. Plasma gamma-glutamyltransferase, cysteinyl-glycine, and oxidized low-density lipoprotein: a pathway associated with myocardial infarction risk? Arterioscler Thromb Vasc Biol. 2010;30:2053–8.

    Article  CAS  PubMed  Google Scholar 

  9. Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5:1113–24.

    Article  CAS  PubMed  Google Scholar 

  10. Boeing H, Wahrendorf J, Becker N. EPIC-Germany–A source for studies into diet and risk of chronic diseases. European Investigation into Cancer and Nutrition. Ann Nutr Metab. 1999;43:195–204.

    CAS  Google Scholar 

  11. Boeing H, Korfmann A, Bergmann MM. Recruitment procedures of EPIC-Germany. European Investigation into Cancer and Nutrition. Ann Nutr Metab. 1999;43:205–15.

    CAS  Google Scholar 

  12. Bohlscheid-Thomas S, Hoting I, Boeing H, Wahrendorf J. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the German part of the EPIC project. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol. 1997;26(Suppl 1):S59–70.

    Article  PubMed  Google Scholar 

  13. Klipstein-Grobusch K, Georg T, Boeing H. Interviewer variability in anthropometric measurements and estimates of body composition. Int J Epidemiol. 1997;26(Suppl 1):S174–80.

    Article  PubMed  Google Scholar 

  14. Barlow WE, Ichikawa L, Rosner D, Izumi S. Analysis of case-cohort designs. J Clin Epidemiol. 1999;52:1165–72.

    Article  CAS  PubMed  Google Scholar 

  15. Spranger J, Kroke A, Möhlig M, Bergmann MM, Ristow M, Boeing H, et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet. 2003;361:226–8.

    Article  CAS  PubMed  Google Scholar 

  16. Fieller E. The biological standardization of insulin. J Roy Stat Soc. 1940;7(Supplement):1–15.

    Google Scholar 

  17. Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol Med. 2008;14:741–51.

    Article  CAS  PubMed  Google Scholar 

  18. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116:1784–92.

    Article  CAS  PubMed  Google Scholar 

  19. Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279:32345–53.

    Article  CAS  PubMed  Google Scholar 

  20. Lee DH, Blomhoff R, Jacobs DR Jr. Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res. 2004;38:535–9.

    Article  CAS  PubMed  Google Scholar 

  21. Khan HA, Sobki SH, Khan SA. Association between glycaemic control and serum lipids profile in type 2 diabetic patients: HbA1c predicts dyslipidaemia. Clin Exp Med. 2007;7:24–9.

    Article  CAS  PubMed  Google Scholar 

  22. Khan HA. Clinical significance of HbA1c as a marker of circulating lipids in male and female type 2 diabetic patients. Acta Diabetol. 2007;44:193–200.

    Article  Google Scholar 

  23. Gatti A, Maranghi M, Bacci S, Carallo C, Gnasso A, Mandosi E, et al. Poor Glycemic Control Is an Independent Risk Factor for Low HDL Cholesterol in Patients With Type 2 Diabetes. Diabetes Care. 2009;32:1550–2.

    Article  CAS  PubMed  Google Scholar 

  24. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama. 2001;286:327–34.

    Article  CAS  PubMed  Google Scholar 

  25. Dehghan A, Kardys I, de Maat MP, Uitterlinden AG, Sijbrands EJ, Bootsma AH, et al. Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes. 2007;56:872–8.

    Article  CAS  PubMed  Google Scholar 

  26. Doi Y, Kiyohara Y, Kubo M, Ninomiya T, Wakugawa Y, Yonemoto K, et al. Elevated C-reactive protein is a predictor of the development of diabetes in a general Japanese population: the Hisayama Study. Diabetes Care. 2005;28:2497–500.

    Article  CAS  PubMed  Google Scholar 

  27. Laaksonen DE, Niskanen L, Nyyssönen K, Punnonen K, Tuomainen TP, Valkonen VP, et al. C-reactive protein and the development of the metabolic syndrome and diabetes in middle-aged men. Diabetologia. 2004;47:1403–10.

    Article  CAS  PubMed  Google Scholar 

  28. Hu FB, Meigs JB, Li TY, Rifai N, Manson JE. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes. 2004;53:693–700.

    Article  CAS  PubMed  Google Scholar 

  29. Nakanishi S, Yamane K, Kamei N, Okubo M, Kohno N. Elevated C-reactive protein is a risk factor for the development of type 2 diabetes in Japanese Americans. Diabetes Care. 2003;26:2754–7.

    Article  CAS  PubMed  Google Scholar 

  30. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52:812–7.

    Article  CAS  PubMed  Google Scholar 

  31. Freeman DJ, Norrie J, Caslake MJ, Gaw A, Ford I, Lowe GD, et al. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes. 2002;51:1596–600.

    Article  CAS  PubMed  Google Scholar 

  32. Barzilay JI, Abraham L, Heckbert SR, Cushman M, Kuller LH, Resnick HE, et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes. 2001;50:2384–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hu G, Jousilahti P, Tuomilehto J, Antikainen R, Sundvall J, Salomaa V. Association of Serum C-Reactive Protein Level with Sex-Specific Type 2 Diabetes Risk: A Prospective Finnish Study. J Clin Endocrinol Metab. 2009;94:2099–105.

    Article  CAS  PubMed  Google Scholar 

  34. Lee C, Adler A, Sandhu M, Sharp S, Forouhi N, Erqou S, et al. Association of C-reactive protein with type 2 diabetes: prospective analysis and meta-analysis. Diabetologia. 2009;52:1040–7.

    Article  CAS  PubMed  Google Scholar 

  35. Little RR, England JD, Wiedmeyer HM, Madsen RW, Pettitt DJ, Knowler WC, et al. Glycated haemoglobin predicts progression to diabetes mellitus in Pima Indians with impaired glucose tolerance. Diabetologia. 1994;37:252–6.

    Article  CAS  PubMed  Google Scholar 

  36. Yoshinaga H, Kosaka K. High glycosylated hemoglobin levels increase the risk of progression to diabetes mellitus in subjects with glucose intolerance. Diabetes Res Clin Pract. 1996;31:71–9.

    Article  CAS  PubMed  Google Scholar 

  37. Narayan KM, Hanson RL, Pettitt DJ, Bennett PH, Knowler WC. A two-step strategy for identification of high-risk subjects for a clinical trial of prevention of NIDDM. Diabetes Care. 1996;19:972–8.

    Article  CAS  PubMed  Google Scholar 

  38. Ko GT, Chan JC, Tsang LW, Cockram CS. Combined use of fasting plasma glucose and HbA1c predicts the progression to diabetes in Chinese subjects. Diabetes Care. 2000;23:1770–3.

    Article  CAS  PubMed  Google Scholar 

  39. Pradhan AD, Rifai N, Buring JE, Ridker PM. Hemoglobin A1c predicts diabetes but not cardiovascular disease in nondiabetic women. Am J Med. 2007;120:720–7.

    Article  CAS  PubMed  Google Scholar 

  40. Michaelis D, Jutzi E. Epidemiologie des Diabetes mellitus in der Bevölkerung der ehemaligen DDR: Alters- und geschlechtsspezifische Inzidenz- und Prävalenztrends im Zeitraum 1960–1987 (Article in German). Z Klin Med. 1991;46:59–64.

    Google Scholar 

  41. Fleiss JL. The design and analysis of clinical experiments. New York: Wiley and Sons; 1986.

    Google Scholar 

  42. Al-Delaimy WK, Jansen EH, Peeters PH, van der Laan JD, van Noord PA, Boshuizen HC, et al. Reliability of biomarkers of iron status, blood lipids, oxidative stress, vitamin D, C-reactive protein and fructosamine in two Dutch cohorts. Biomarkers. 2006;11:370–82.

    Article  CAS  PubMed  Google Scholar 

  43. Pischon T, Hankinson SE, Hotamisligil GS, Rifai N, Willett WC, Rimm EB. Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women. Circulation. 2003;108:155–60.

    Article  CAS  PubMed  Google Scholar 

  44. Pischon T, Hotamisligil GS, Rimm EB. Adiponectin: stability in plasma over 36 hours and within-person variation over 1 year. Clin Chem. 2003;49:650–2.

    Article  CAS  PubMed  Google Scholar 

  45. Cole SR, Hernan MA. Fallibility in estimating direct effects. Int J Epidemiol. 2002;31:163–5.

    Article  PubMed  Google Scholar 

  46. Petersen ML, Sinisi SE, van der Laan MJ. Estimation of direct causal effects. Epidemiology. 2006;17:276–84.

    Article  PubMed  Google Scholar 

  47. Kaufman JS, Maclehose RF, Kaufman S. A further critique of the analytic strategy of adjusting for covariates to identify biologic mediation. Epidemiol Perspect Innov. 2004;1:4.

    Article  PubMed  Google Scholar 

  48. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in Obesity and Type 2 Diabetes: Close Association with Insulin Resistance and Hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930–5.

    Article  CAS  PubMed  Google Scholar 

  49. Simpson KA, Singh MA. Effects of exercise on adiponectin: a systematic review. Obesity (Silver Spring). 2008;16:241–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Manuela Bergman for critical comments to the final version of the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Montonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montonen, J., Drogan, D., Joost, HG. et al. Estimation of the contribution of biomarkers of different metabolic pathways to risk of type 2 diabetes. Eur J Epidemiol 26, 29–38 (2011). https://doi.org/10.1007/s10654-010-9539-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-010-9539-0

Keywords

Navigation