Skip to main content
Log in

Estimation and influence of physicochemical properties and chemical fractions of surface sediment on the bioaccessibility of Cd and Hg contaminant in Langat River, Malaysia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study applied the use of sequential extraction technique and simple bioaccessibility extraction test to quantify the bioavailable fractions and the human bioaccessible concentration of metals collected from nine stations in surface sediment of the Langat River. The concentrations of total and bioaccessible metals from different stations were in the range of 0.49–1.04, 0.10–0.32 μg g−1 for T-Cd, Bio-Cd, respectively, and 12.9–128.03, 2.06–8.53 μg kg−1 for T-Hg, Bio-Hg, respectively. The results revealed highest R-Bio-Cd in Banting station (55.3 %), while the highest R-Bio-Hg was in Kajang station (49.61 %). The chemical speciation of Cd in most sampling stations was in the order of oxidisable-organic > residual > exchangeable > acid-reducible, while speciation of Hg was in the order of exchangeable > residual > oxidisable-organic > acid-reducible. The correlation matric of mean content showed that the TOM, particle size and Mg++ in polluted surface sediments was highly correlated with total mercury. The PCA showed that the main factors influencing the bioaccessibility of Hg in surface sediments were the sediment TOM, F1 (EFLE) and F3 (oxidation-organic), while the factor influencing the bioaccessibility of Cd was the F3 (oxidation-organic) and T-Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: (MOTAC 2007)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed, F., Alam, L., Ta, C., Mohamed, R., & Mokhtar, M. (2016). A review on the chemical pollution of Langat River, Malaysia. Asian Journal of Water, Environment and Pollution, 13(1), 9–15. doi:10.3233/AJW-160002.

    Article  Google Scholar 

  • Ahmed, F., & Chamhuri, S. (2001). Industrial development degradation: Case study of Langat Basin, Malaysia. Sustainability at the millennium: Globalization, competitiveness and the public trust, January 21–25, 2001 ninth international conference of greening of industry network, Bangkok.

  • Apello, J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). Rotterdam: CRC Press.

    Book  Google Scholar 

  • Arain, B., Kazi, G., Jamali, K., Afridi, I., Jalbani, N., Sarfiraz, A., et al. (2008). Time saving modified BCR sequential extraction procedure for the fraction of Cd, Cr, Cu, Ni, Pb and Zn in sediment samples of polluted lake. Journal of Hazardous Materials, 160, 235–239.

    Article  CAS  Google Scholar 

  • Aris, Z., Abdullah, H., Praveena, M., Yusoff, K., & Juahir, H. (2010). Extenuation of saline solutes in shallow aquifer of a small tropical island: A case study of Manukan Island, North Borneo. Environment Asia, 3, 84–92.

    Google Scholar 

  • Badri, Ma., & Aston, S. A. (1983). Observation on heavy metal geochemical associations in polluted and nonpolluted estuarine sediments. Environmental Pollution (Series B), 6, 181–193.

    Article  CAS  Google Scholar 

  • Calmano, W., Hong, J., & Förstner, U. (1993). Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science Technology, 28, 223–235.

    CAS  Google Scholar 

  • Camberato, J. (2001). Cation exchange capacity—Everything you want to know and much more. South Carolina Turfgrass Foundation News. Retrieved May 8, 2011, from http://ebookbrowse.com/cation-exchange-capacity-pdf-d19788599.

  • Camusso, M., & Gasparella, A. (2006). Measuring bioavailable trace metals from freshwater sediments by diffusive gradients in thin films (DGT) in monitoring procedures for quality assessment. Annales de Chimie, 96, 205–213.

    Article  CAS  Google Scholar 

  • Chen, W., Kao, M., Chen, F., & Dong, D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66(8), 1431–1440.

    Article  CAS  Google Scholar 

  • Collasiol, A., Pazebon, D., & Maia, M. (2004). Ultrasound assisted mercury extraction from soil and sediment. Analytica Chimica Acta, 518, 157–164.

    Article  CAS  Google Scholar 

  • Devesa-Rey, R., Diaz-Fierros, F., & Barral, M. T. (2010). Trace metals in river bed sediments: An assessment of their partitioning and bioavailability by using multivariate exploratory analysis. Journal Environment Management, 91, 2471–2477.

    Article  CAS  Google Scholar 

  • Devesa-Rey, R., Paradelo, R., Díaz-Fierros, F., & Barral, M. T. (2008). Fractionation and bioavailability of arsenic in the bed sediments of the Anllóns River (NW Spain). Water, Air, and Soil pollution, 195, 189–199.

    Article  CAS  Google Scholar 

  • DOE. (2013). Malaysia environmental quality report 2013. Putrajaya, Malaysia.

  • Dou, Y., Zhao, J., Hu, B., & Yang, S. (2013). Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea. Marine Pollution Bulletin, 67, 137–145.

    Article  CAS  Google Scholar 

  • El-Radaideh, N., Al-Taani, A. A., Al-Momani, T., Tarawneh, K., Batayneh, A., & Taani, A. (2014). Evaluating the potential of sediments in Ziqlab Reservoir (northwest Jordan) for soil replacement and amendment. Lake and Reservoir Management, 30, 32–45.

    Article  CAS  Google Scholar 

  • Forstner, U., & Wittmann, W. (1981). Metal pollution in the aquatic environment (2nd ed., p. 486). Berlin: Springer.

    Book  Google Scholar 

  • Fuentes, A., Lorens, M., Saez, J., Aguilar, I., Ortuno, F., & Meseguer, F. (2008). Comparative study of six different sludges by sequential speciation of heavy metals. Bioresource Technology, 99, 517–525.

    Article  CAS  Google Scholar 

  • Gee, G. W., Bauder, J. W. (1986). Particle-size analysis. In: A. Klute (Ed.), Methods of soil analysis: Part 1. physical and mineralogical methods (2nd edn., pp. 383–411). Madison: Agronomy, 9. Soil Science Society of America.

    Google Scholar 

  • Gu, G., Lin, Q., Jiang, J., & Wang, H. (2014). Metal pollution status in Zhelin Bay surface sediments inferred from a sequential extraction technique, South China Sea. Marina Pollution Bulletin, 81, 256–261.

    Article  CAS  Google Scholar 

  • Gu, Y., Yan, G., & Qin, L. (2016). Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Applied Geochemistry, 67, 52–58.

    Article  CAS  Google Scholar 

  • Hoanninen, O., Knol, A., Jantunen, M., Lim, T., Conrad, A., Rappolder, M., et al. (2014). Environmental burden of disease in Europe: Assessing nine risk factors in six countries. Environmental Health Perspective, 122, 439–446.

    Google Scholar 

  • Hu, B., Li, G., Li, J., Bi, J., Zhao, J., & Bu, R. (2013). Spatial distribution and ecotoxicological risk assessment of heavy metals in surface sediments of the southern Bohai Bay. Environmental Science and Pollution Research, 20, 4099–4110.

    Article  CAS  Google Scholar 

  • Ikem, A., Egiebor, O., & Nyavor, K. (2003). Trace elements in water, fish and sediment from Tuskegee Lake, Southeastern USA. Water, Air, and Soil Pollution, 149, 51–75.

    Article  CAS  Google Scholar 

  • Ismail, A. (1993). Heavy metal concentrations in sediments off Bintulu, Malaysia. Marine Pollution Bulletin, 26, 706–707.

    Article  CAS  Google Scholar 

  • Jinghua, R., Williams, P. N., Jun, L., Hongrui, M., & Xiaorong, W. (2015). Sediment metal bioavailability in Lake Taihu, China: Evaluation of sequential extraction, DGT, and PBET techniques. Environmental Science Pollution Research, 22, 12919–12928.

    Article  Google Scholar 

  • Kazi, G., Jamali, K., Kazi, H., Arain, B., Afridi, I., & Siddiqui, A. (2005). Evaluating the mobility of toxic metals in untreated industrial wastewater sludge using a BCR sequential extraction procedure and a leaching test. Analytical and Bioanalytical Chemistry, 383, 297–304.

    Article  CAS  Google Scholar 

  • Kim, Y., Kim, W., Lee, U., Lee, S., & Cook, J. (2002). Assessment of As and heavy metal contamination in the vicinity of Duckum Au–Ag mine, Korea. Environment Geochemical Health, 24, 213–225.

    Article  Google Scholar 

  • Li, Z. G., Zhang, G. S., Liu, Y., Wan, K. Y., Zhang, R. H., & Chen, F. (2013). Soil nutrient assessment for urban ecosystems in Hubei, China. PloS one, 8(9), e75856.

    Article  CAS  Google Scholar 

  • Lim, W. Y., Aris, A. Z., Ismail, T. H. T., & Zakaria, M. P. (2013). Elemental hydrochemistry assessment on its variation and quality status in Langat River, Western Peninsular Malaysia. Environmental Earth Sciences, 70(3), 993–1004.

    Article  CAS  Google Scholar 

  • Liu, X., Lou, C., Xu, L., & Sun, L. (2012). Distribution and bioavailability of cadmium in ornithogenic coral-sand sediments of the Xisha archipelago, South China Sea. Environment Pollution, 168, 151–160.

    Article  CAS  Google Scholar 

  • Looi, L., Zaharin, A., Yusoff, F., & Hashim, H. (2014). Mercury contamination in the estuaries and coastal sediments of the Strait of Malacca. Environment Monitoring Assessment, 187, 4099.

    Article  Google Scholar 

  • Luo, S., Ding, J., Xu, B., Wang, J., Li, B., & Yu, S. (2012a). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science Total Environment, 424, 88–96.

    Article  CAS  Google Scholar 

  • Luo, S., Yu, S., Zhu, G., & Li, D. (2012b). Trace metal contamination in urban soils of China. Science Total Environment, 421–422, 17–30.

    Article  Google Scholar 

  • Luoma, N., & Rainbow, S. (2008). Metal contamination in aquatic environments. New York: Cambridge University Press.

    Google Scholar 

  • Madrid, F., Biasioli, M., & Ajmone-Marsan, F. (2008). Availability and bioaccessibility of metals in fine particles of some urban soils. Archives of Environmental Contamination and Toxicology, 55, 21–32.

    Article  CAS  Google Scholar 

  • Martin, R., Arana, D., Ramos-Miras, J., Gil, C., & Boluda, R. (2015). Impact of 70 years urban growth associated with heavy metal pollution. Environment Pollution, 196, 156–163.

    Article  Google Scholar 

  • McLean, E. O. (1982). Soil pH and lime requirement. In A. L., Page, R. H., Miller and D. R. Keeney (Eds.), Methods of soil analysis. Part 2 - Chemical and microbiological properties (2nd edn., pp. 199-223). Agronomy 9.

  • Morillo, J., Usero, J., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55, 431–442.

    Article  CAS  Google Scholar 

  • MOTAC (Ministry of Tourism and Culture Malaysia). (2007). www.tourism.gov.my (Tourism Malaysia Official Website).

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., Sips, A. J. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental science & technology, 36(15), 3326–3334.

    Article  CAS  Google Scholar 

  • Saeedi, M., Li, L. Y., Karbassi, A. R., & Zanjani, A. J. (2013). Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Environment Monitoring Assessment, 185, 1737–1754.

    Article  CAS  Google Scholar 

  • Safaa, K., Mohd, I., Syaizwan, Z., & Rohasliney, H. (2015). Evaluation of the status and distributions of heavy metal pollution in surface sediments of the Langat River Basin in Selangor Malaysia. Marine Pollution Bulletin, 101, 391–396.

    Article  Google Scholar 

  • Safruk, M., Robert, G., Blair, J., Celine, P., Alan, T., & Elliot, A. (2015). The bioaccessibility of soil-based mercury as determined by physiological based extraction tests and human biomonitoring in children. Science of the Total Environment, 518–519, 545–553.

    Article  Google Scholar 

  • Sarmani, S. (1989). The determination of heavy metals in water, suspended materials and sediments from Langat River, Malaysia. Hydrobiologia, 176(177), 233–238.

    Article  Google Scholar 

  • Shafie, A., Ahmad, A., & Nadzhratul, P. (2013). Influential factors on the levels of cation exchange capacity in sediment at Langat river. Arabian Journal of Geosciences, 6(8), 3049–3058.

    Article  Google Scholar 

  • Sheng, J., Fan, F., Yang, Y., Qi, H., & Xu, L. (2008). Distribution patterns of heavy metals in surface sediments of the Yangtze Estuary and its adjacent areas and environmental quality assessment. Environmental Science, 29, 2405–2412.

    Google Scholar 

  • Soil Survey Staff. (1992). Soil survey laboratory methods manual. Ver. 2.0. USDA/NRCS, Soil Survey Investigations report no. 42. U.S. Government Printing Office, Washington, DC.

  • Simpson, S., Batley, E., Chariton, A., Stauber, L., King, K., Chapman, J., et al. (2005). Handbook for sediment quality assessment. Clayton: CSIRO Publishing.

    Google Scholar 

  • Spisto, G. (1989). The chemistry of soils (p. 277). New York, NY: Oxford University Press.

    Google Scholar 

  • Sundaray, S. K., Nayak, B. B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—A case study: Mahanadi basin, India. Journal Hazard Material, 186, 1837–1846.

    Article  CAS  Google Scholar 

  • Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Zmierczak, A., Niemela, J., et al. (2007). Promoting ecosystem and human health in urban areas using Green Infrastructure, a literature review. Landscape and Urban Planning, 81, 167–178.

    Article  Google Scholar 

  • Wan, L. Y., Aris, A. Z., Zakaria, M. P. (2012). Spatial variability of metals in surface water and sediment in the Langat river and geochemical factors that influence their watersediment interactions. The Scientific World Journal, 2012, 1–14, 652150.

    Google Scholar 

  • Xiaodong, Z., Fen, Y., & Chaoyang, W. (2015). Factors influencing the heavy metal bioaccessibility in soils were site dependent from different geographical locations. Environment Science Pollution Research, 22, 13939–13949.

    Article  Google Scholar 

  • Xiaodong, Z., Fen, Y., & Chaoyang, W. (2016). Bioaccessibility of heavy metals in soils cannot be predicted by a single model in two adjacent areas. Environment Geochemical Health, 38, 233–241.

    Article  Google Scholar 

  • Yap, C. K., Choh, M. S., Edward, F. B., Ismail, A., & Tan, S. G. (2006). Comparison of heavy metal concentrations in surface sediment of Tanjung Piai wetland with other sites receiving anthropogenic inputs along the southwestern coast of Peninsular Malaysia. Wetland Science, 4(1), 48–57.

    Google Scholar 

  • Yap, C. K., Ismail, A., Tan, S. G., & Omar, H. (2002). Concentrations of Cu and Pb in the offshore and intertidal sediments of the west coast of Peninsular Malaysia. Environment International, 28, 467–479.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Universiti Putra Malaysia for supporting this study via vot no. 9458700 funded by the Ministry of Higher Education. The authors are very thankful to the chief editor and the reviewers of this article for their valuable information and contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Yusoff Ishak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhum, S.A., Ishak, M.Y. & Zulkifli, S.Z. Estimation and influence of physicochemical properties and chemical fractions of surface sediment on the bioaccessibility of Cd and Hg contaminant in Langat River, Malaysia. Environ Geochem Health 39, 1145–1158 (2017). https://doi.org/10.1007/s10653-016-9883-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9883-4

Keywords

Navigation