Skip to main content

Advertisement

Log in

Cadmium, lead and mercury concentrations in pathologically altered human kidneys

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Heavy metals, including cadmium (Cd), lead (Pb) and mercury (Hg) act as nephrotoxic agents, particularly in the renal cortex. The aim of the study was to determine the concentrations of Cd, Pb and Hg in kidneys removed from patients due to lesions of various etiologies and from patients after the rejection of transplanted kidneys. Additionally, we determined the influence of selected biological and environmental factors on the concentrations of toxic metals. The study material consisted of kidneys with tumor lesions (n = 27), without tumors (n = 7) and its extracted grafts (n = 10) obtained from patients belongs to the north-western areas of Poland. The determined metal concentrations in the renal cortex and medulla may be arranged in the following descending order: Cd > Pb > Hg. The highest concentrations of Cd and Hg were found in the cortex, while the maximum content Pb was observed in the medulla. Significant correlations were found in the concentrations of the same metals between cortex and medulla and between Pb and Hg in the renal medulla. Pb content was higher in the renal medulla of men than in the cortex of the elderly (above 60 years of age). The highest concentrations of Pb and Hg were found in the cortex and medulla, of the kidneys had not neoplastic changes, and lower content of these metals were found in the extracted kidney grafts. In summary, renal grafts accumulate less heavy metals than cancerous kidneys, what could have been caused by immunosuppressors taken by the graft recipients. Moreover, sex, age and smoking are key factors responsible for xenobiotics concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aalbers, T. G., Houtman, J. P., & Makking, B. (1987). Trace-element concentrations in human autopsy tissue. Clinical Chemistry, 33, 2057–2064.

    CAS  Google Scholar 

  • Antonowicz-Juchniewicz, J., Jodkowska, A., & Kwiecińska, D. (2006). Secondary nephropathies in occupational health practice I. Secondary nephropathies due to occupational exposure. Medycyna Pracy, 57, 389–400.

    CAS  Google Scholar 

  • Barbier, O., Jacquillet, G., Tauc, M., Cougnon, M., & Poujeol, P. (2005). Effect of heavy metals on, and handling by, the kidney. Nephron Physiology, 99, 105–110.

    Article  Google Scholar 

  • Barregard, L., Fabricius-Lagging, E., Lundh, T., Mölne, J., Wallin, M., Olausson, M., et al. (2010). Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources. Environmental Research, 110, 47–54.

    Article  CAS  Google Scholar 

  • Barregard, L., Svalander, C., Schütz, A., Westberg, G., Sällsten, G., Blohmé, I., et al. (1999). Cadmium, mercury, and lead in kidney cortex of the general Swedish population: A study of biopsies from living kidney donors. Environmental Health Perspectives, 107, 867–871.

    Article  CAS  Google Scholar 

  • Bem, E. M., Kaszper, B. W., Orłowski, C., Piotrowski, J. K., Wójcik, G., & Zołnowska, E. (1993a). Cadmium, zinc, copper and metallothionein levels in the kidney and liver of humans from central Poland. Environmental Monitoring and Assessment, 25, 1–13.

    Article  CAS  Google Scholar 

  • Bem, E. M., Orlowski, C., Piotrowski, J. K., Januszewski, K., & Pajak, J. (1993b). Cadmium, zinc, copper, and metallothionenein levels in the kidney and liver of inhabitants of upper Silesia (Poland). International Archives of Occupational and Environmental Health, 65, 57–63.

    Article  CAS  Google Scholar 

  • Bishak, Y. K., Payahoo, L., Osatdtrahimi, A., & Nourazarian, A. (2015). Mechanisms of cadmium carcinogenicity in the gastrointestinal tract. Asian Pacific Journal of Cancer Prevention, 16, 9–21.

    Article  Google Scholar 

  • Bjermo, H., Sand, S., Nalsen, C., Lundh, T., Barbieri, H. E., Pearson, M., et al. (2013). Lead, mercury, and cadmium in blood and their relation to diet among Swedish adults. Food and Chemical Toxicology, 57, 161–167.

    Article  CAS  Google Scholar 

  • Calvo, F. B., Santos, D, Jr., Rodrigues, C. J., Krug, F. J., Marumo, J. T., Schor, N., et al. (2009). Variation in the distribution of trace elements in renal cell carcinoma. Biological Trace Element Research, 130, 107–113.

    Article  CAS  Google Scholar 

  • Cikrt, M., Hurych, J., Kuklová, D., Havrdová, J., Lepsí, P., Kopecký, J., et al. (1985). Analysis of the renal tissue of a woman chronically exposed to cadmium. International Archives of Occupational and Environmental Health, 55, 241–246.

    Article  CAS  Google Scholar 

  • Curti, B. D. (2004). Renal cell carcinoma. Journal of the American Medical Association, 292, 97–100.

    Article  CAS  Google Scholar 

  • Czeczot, H., & Skrzycki, M. (2010). Cadmium-element completely unnecessary for the organism. Postępy Higieny i Medycyny Doświadczalnej, 64, 38–49.

    Google Scholar 

  • Dobrowolski, Z., Drewniak, T., Kwiatek, W., & Jakubik, P. (2002). Trace elements distribution in renal cell carcinoma depending on stage of disease. European Urology, 42, 475–480.

    Article  CAS  Google Scholar 

  • Dumieński, M. (2008). Exposure to lead. Brochure for mobile workers exposed to lead. Foundation for Children Miasteczko Śląskie (pp. 1–68).

  • Friis, L., Petersson, L., & Edling, C. (1998). Reduced cadmium levels in human kidney cortex in Sweden. Environmental Health Perspectives, 106, 175–178.

    Article  CAS  Google Scholar 

  • Garcia, F., Ortega, A., Domingo, J. L., & Corbella, J. (2001). Accumulation of metals in autopsy tissues of subjects living in Tarragona County, Spain. Journal of Environmental Science and Health, 36, 1767–1786.

    Article  CAS  Google Scholar 

  • Garcia-Esquinas, E., Navas-Acien, A., Perez-Gomez, B., & Artelejo, F. R. (2015). Association of lead and cadmium exposure with frailty in US older adults. Environmental Research, 137, 424–431.

    Article  CAS  Google Scholar 

  • Gobe, G., & Crane, D. (2010). Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. Toxicology Letters, 198, 49–55.

    Article  CAS  Google Scholar 

  • Hać, E., Krzyzanowski, M., & Krechniak, J. (1998). Cadmium content in human kidney and hair in the Gdansk region 1998. Science of the Total Environment, 224, 81–85.

    Article  Google Scholar 

  • Honda, R., & Nogawa, K. (1987). Cadmium, zinc and copper relationships in kidney and liver of humans exposed to environmental cadmium. Archives of Toxicology, 59, 437–442.

    Article  CAS  Google Scholar 

  • Ilyasova, D., & Schwartz, G. G. (2005). Cadmium and renal cancer. Toxicology and Applied Pharmacology, 207, 179–186.

    Article  CAS  Google Scholar 

  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7, 60–72.

    Article  Google Scholar 

  • Jarup, L., & Akesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238, 201–208.

    Article  Google Scholar 

  • Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R. C., Ghafoor, A., et al. (2005). Cancer statistics, 2015. Cancer Journal for Clinicians, 55, 10–30.

    Article  Google Scholar 

  • Johansen, P., Mulvad, G., Pedersen, H. S., Hansen, J. C., & Riget, F. (2006). Accumulation of cadmium in livers and kidneys of Greenlanders. Science of the Total Environment, 372, 58–63.

    Article  CAS  Google Scholar 

  • Johansen, P., Mulvad, G., Pedersen, H. S., Hansen, J. C., & Riget, F. (2007). Human accumulation of mercury in Greenland. Science of the Total Environment, 377, 173–178.

    Article  CAS  Google Scholar 

  • Koizumi, N., Murata, K., Hayashi, C., Nishio, H., & Goji, J. (2008). High cadmium accumulation among humans and primates: Comparison across various mammalian species—A study from Japan. Biological Trace Element Research, 121, 205–214.

    Article  CAS  Google Scholar 

  • Kwiatek, W. M., Drewniak, T., Gajda, M., Gałka, M., Hanson, A. L., & Cichocki, T. (2002). Preliminary study on the distribution of selected elements in cancerous and non-cancerous kidney tissues. Journal of Trace Elements in Medicine and Biology, 16, 155–160.

    Article  CAS  Google Scholar 

  • Lanocha, N., Kalisinska, E., Kosik-Bogacka, D. I., Budis, H., Sokolowski, S., & Bohatyrewicz, A. (2012). Concentrations of trace elements in bones of the hip joint from patients after hip replacement surgery. Journal of Trace Elements in Medicine and Biology, 26, 20–25.

    Article  CAS  Google Scholar 

  • Lindqvist, B., Nystrom, K., Stegmayr, B., Wirell, M., & Eriksson, A. (1989). Cadmium concentration in human kidney biopsies. Scandinavian Journal of Urology and Nephrology, 23, 213–217.

    Article  CAS  Google Scholar 

  • Lopez-Artiguez, M., Camean, A., Gonzalez, G., & Repetto, M. (1995). Metal accumulation in human kidney cortex: Mutual interrelations and effect of human factors. Human and Experimental Toxicology, 14, 335–340.

    Article  CAS  Google Scholar 

  • Marchewka, Z. (2009). The mechanism of nephrotoxic activity of selected heavy metals. Bromatologia i Chemia Toksykologiczna, 4, 1135–1143.

    Google Scholar 

  • Mortada, W. L., Sobh, M. A., El-Defrawy, M. M., & Farahat, S. E. (2002). Mercury in dental restoration: Is there a risk of nephrotoxicity? Journal of Nephrology, 15, 171–176.

    Google Scholar 

  • Motzer, R. J., Bander, N. H., & Nanus, D. M. (1996). Renal-cell carcinoma. The New England Journal of Medicine, 335, 865–875.

    Article  CAS  Google Scholar 

  • Nordberg, G. F., Fowler, B. A., Nordberg, M., & Friberg, L. T. (2008). Handbook on the toxicology of metals. Amsterdam: Elsevier.

    Google Scholar 

  • Rahil-Khazen, R., Bolann, B. J., Myking, A., & Ulvik, R. J. (2002). Multi-element analysis of trace element levels in human autopsy tissues by using inductively coupled atomic emission spectrometry technique (ICP-AES). Journal of Trace Elements in Medicine and Biology, 16, 15–25.

    Article  CAS  Google Scholar 

  • Sabath, E., & Robles-Osorio, M. L. (2012). Renal health and the environment: Heavy metal nephrotoxicity. Nefrologia, 32, 279–286.

    Google Scholar 

  • Sapota, A., & Skrzypińska-Gawrysiak, M. (2010). Mercury. Podstawy i Metody Oceny Środowiska Pracy, 3, 85–149.

    Google Scholar 

  • Satarug, S., & Moore, M. R. (2004). Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environmental Health Perspectives, 10, 1099–1103.

    Article  Google Scholar 

  • Schopfer, J., Drasch, G., & Schrauzer, G. N. (2010). Selenium and cadmium levels and ratios in prostates, livers, and kidneys of nonsmokers and smokers. Biological Trace Element Research, 134, 180–187.

    Article  Google Scholar 

  • Skoczyńska, A., Martynowicz, H., Poręba, R., Antonowicz-Juchniewicz, J., Sieradzki, A., & Andrzejak, R. (2001). Urinary trehalase activity as an indicator of renal dysfunction in copper smelters. Medycyna Pracy, 4, 247–252.

    Google Scholar 

  • Svartengren, M., Elinder, C. G., Friberg, L., & Lind, B. (1986). Distribution and concentration of cadmium in human kidney. Environmental Research, 39, 1–7.

    Article  CAS  Google Scholar 

  • Tang, H. L., Chu, K. H., Mak, Y. F., Lee, W., Cheuk, A., Yim, K. F., et al. (2006). Minimal change disease following exposure to mercury-containing skin lightening cream. Hong Kong Medical Journal, 4, 316–318.

    Google Scholar 

  • Torra, M., To-Figueras, J., Rodamilans, M., Brunet, M., & Corbella, J. (1995). Cadmium and zinc relationships in the liver and kidney of humans exposed to environmental cadmium. Science of the Total Environment, 170, 53–57.

    Article  CAS  Google Scholar 

  • Vahter, M., Akesson, A., Liden, C., Ceccatelli, S., & Berglund, M. (2007). Gender differences in the disposition and toxicity of metals. Environmental Research, 104, 85–95.

    Article  CAS  Google Scholar 

  • Wallin, M., Sallsten, G., Lundh, T., & Barregard, L. (2014). Low-level cadmium exposure and effects on kidney function. Occupational and Environmental Medicine, 71, 848–854.

    Article  Google Scholar 

  • Yoo, Y. C., Lee, S. K., Yang, J. Y., Kim, K. W., Lee, S. Y., Oh, S. M., et al. (2002). Interrelationship between the concentration of toxic and essential elements in Korean Tissues. Journal of Health Science, 48, 195–200.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danuta I. Kosik-Bogacka.

Ethics declarations

Conflict of interest

None.

Additional information

Communicated by D. I. Kosik-Bogacka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilk, A., Kalisińska, E., Kosik-Bogacka, D.I. et al. Cadmium, lead and mercury concentrations in pathologically altered human kidneys. Environ Geochem Health 39, 889–899 (2017). https://doi.org/10.1007/s10653-016-9860-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9860-y

Keywords

Navigation